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A B S T R A C T 

There are many aggregation operators and applications have been developed up to date, but in 

this paper we present the idea of Pythagorean fuzzy weighted geometric aggregation operator, 
and also discuss some of their basic properties. At the last we give an application of this 

proposed operator. For this purpose we construct an algorithm and also construct a numerical 

example. 

 

 

1. Introduction 

The idea of fuzzy set was familiarized by L. A. Zadeh 

in 1965 [1].In 1986, Atanassov presented the idea of IFS, 

which a general form of the FS [2]. The intuitionistic 

fuzzy set has gotten increasingly consideration since its 

development [3, 4, 5, 6, 7, 8, 9, 10, 11]. Bostince and 

Burillo [12] demonstrated that vague sets are 

mathematically equal to IFS. De at al [13]demarcated 

dilation normalization and concentration, of IFS. He 

additionally demonstrated several recommendations in the 

proposed field. Bostince et al. [14] introduced the notion 

of intuitionistic fuzzy generators and also deliberate the 

corresponding of IFS from the intuitionistic fuzzy 

generators. Yager [15, 16] introduced the notion of PFS. 

Xu [17] established several operators such as, (IFWA, 

IFOWA, IFHA) operators.  After the introduction of 

arithmetic aggregation operator, Xu and Yager [18] 

industrialized geometric aggregation operators, such as 

(IFWG, IFOWG, IFHG) operators. They also applied 

them to MAGDM based on IFSs. Wei [19] introduced the 

notion of the induced geometric aggregation operators 

with IFI and they also using these operators for group 

decision making. Liu [20] introduced the notion of 

(IFEWG, IFEOWG) operators. Bellman and L. A. Zadeh 

[21] presented the theory of fuzzy sets in the MAGDM    

problems. IFSs have got great focus [22-24]. In 2015, 

X. Peng and Y. Yang [25] introduced the notion of 

PFWA operator, PFWPA operator , PFWPG 

operators. In [26, 27] Xu and R. R. Yager also worked 

in the field if intuitionistic aggregation operators. 

Thus keeping the advantage of the above aggregation 

operators in this paper we introduce the notion of 

Pythagorean fuzzy weighted geometric aggregation 

operator and also discuss some of their properties. 

This paper consists of six section. In section 2, we 

give some main definitions and results which can be used 

in our late discussion. In section 3, we explain some new 

operational laws and relations on PFS. In section 4, we 

develop PFWG operator and also explain some of their 

properties. Section 5 containing an algorithm for 

MAGDM. In part 6, we have. 

1. Preliminaries  

Definition 2.1 [13]:  Let Z is a fixed set, and then a fuzzy 

set can be defined as: 

           , |VV z z z Z          (1) 

where V   is a mapping from Z  to  [0,1]  , and   V z  

is said to be the degree of membership of element z in Z. 

Definition 2.2 [5]: Let Z is a fixed set, then an 

intuitionistic fuzzy set can bedefined as: 

     , ( ), ( ) |L LL z z z z Z           (2) 

where ( )L z   and  ( )L z   are mappings from Z to [0.1],  

with some  conditions such  that  
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0 ( ) 1, 0 ( ) 1L Lz z    
 
and 

0 ( ) ( ) 1,L Lz z z Z      . 

Definition 2.3:  [17] Let K  be a universal set, then a 

Pythagorean fuzzy set, P in K  can be defined as: 

   { , , ( ) | },P PP k u k v k k K           (3) 

where        : 0,1 , : 0,1P Pu k P v k K  are called 

membership and non-membership functions of  k K   

respectively, with condition     
2 2

0 ( ) ( ) 1,P Pu k v k     

for all  k K . Let   2 2( ) 1 ( )P P Pk u k v k     , then it 

is called the Pythagorean fuzzy index of  k K   with 

condition  0 ( ) 1,P k    for every .k K  

Definition 2.4 [22]: Let  , ,     1 11 , ,   

 2 22 , ,      are three PFNs and  0.    Then

   

   
 

   

   

2 2 2 2

1 2 1 2 1 2

2 2 2 2

1 2 1 2 1 2

1 2

1 2

2

2

1          , ,

2  , ,

(3) , ,

4         1 1 , ,

5          , 1 1 .

c
 

     

     

  

 

  

       

       

 

  





 



   

   

 
     

 

 
    
 

 

Definition 2.5 [22]: Let  ,      be a PFV, then we 

can find the score of     as following:
 

        2 2 ,S              (4) 

where   [ 1,1].S     

Definition 2.6 [22] : Let  ,      be a PFN, then the 

accuracy degree    can be defined as follows:
 

               2 2 ,H               (5) 

where   [0,1].H  
 

Definition 2.7: Let   0.8,0.6  , then
 

     

     

2 2

2 2

0.8 0.6 0.28

0.8 0.6 1

S and

H





  

  

 

Definition 2.8 [22]: Let   1 11 ,      and   

2 22 ( , )    be the two Pythagorean fuzzy numbers, 

then   2 2

1 11S       ,    2 2

2 22 ,S       

  2 2

1 11 ,H        2 2

2 22H      are the  

scores and accuracy of  1   and  2   respectively. Then  

the following holds: 

(1) If  2 1( ) ( ),S S    then  2   is greater than  1

represented by  1 2 ,   

(2) If  1 2( ) ( ),S S    then 

(a) If  1 2( ) ( ),H H    then,  1   and  2   have the 

same information i.e.,  
1 2     and  

1 2  
 

represented by  1 2.   

(b) If  1 2( ) ( )H H    then  2   is greater than  1  

Definition 2.9 [24]: Let    , 1,2,...,
j jj j n      

be a collection of IFVs and let : nIFWG   , 

then the intuitionistic fuzzy set can be define as 

following: 

 

        1 2
1 2 1 2, ,..., ... n

n nIFWG
  

               (6) 

where  1 2, ,...,
T

n     is the weighted vector of 

 1,2,...,j j n  such that,  0,1j   and also 

1

1.
n

j
j




   Mostly, if   1 1 1, ,...,
T

n n n
   , then IFWG 

operator is reduced to an IFG operator of dimension n, 

which can be  demarcated as ensuing: 

    
1

1 2 1 2, ,..., ... n
n nIFG                 (7) 

Definition 2.10 [24]: Let   , 1,2,...,
j jj j n    

be the assortment of IFVs. Then IFOWG operator of 

dimension n is a mapping : ,nIFOWG    and also 

that has an associated vector   1 2, ,..., ,
T

n   
 
with 

some conditions  0,1j    and  
1

1.
n

j
j




  Also 

              1 2

1 2 1 2, ,..., ...
n

n nIFOWG
  

              (8) 

We also know that       1 , 2 ,..., n    is a 

permutation of (1,2, …, n) such that     1j j    for 
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all j. Particularly, if   1 1 1, ,...,
T

n n n
  , then IFOWG 

operator is reduced to IFG operator of n 

dimension. 

2. Operational Lawsand Relations 

Theorem 3.1: Let   1 11 ,     and 2

 2 22 ,p    be the two PFVs, and let 1 1 2      

and  2 0 .     Then 1  and 2  are also PFVs.  

Proof : Since   1 11 ,      and   2 22 ,p     

are the two PFVs , then we have  

       
1 1 2 2

0,1 , 0,1 , 0,1 , 0,1           

and
2 2

1 1
1,    2 2

2 2
1.    Hence 

   

     
   

2 2 2 2

1 2 1 2 1 1

2 2 2 2 2 2

1 2 1 2 1 1

2 2 2 2 2 2

1 2 1 2 1 1

22

2

 1 1

1 1

1.

     

     

     

     

     

     

  

     

     



 

Thus  1  is a PFV . Now let  0
    and  0.

   

Since 

   

   

   

2
2

2

2

2 2

2 2

1 1

1 1 1

1 1 1

1.

 

 

 

 

 

 




 

 

 
    
 

 
      

 

    



 

Thus  2   is also a PFV. 

There are some special cases, now we are going to discuss  

these cases in detail in the following. 

(1) If  ,p    =(1,1)  i.e. 1, 1,     

then  1,1 .   

   

      

21 1 1, 1 1 1

1, 1 0 1, 1 1,1 .

   
     

            

   

 

(2)  If    , 0,0 ,p      i.e, 0, 0,     

then   0,0   

   

     

2, 1 1 0, 1 1 0

0, 1 1 0, 1 1 0,0 .

   
  



   
            

 
     
 

 

(3)  If  , (0,1)p       i.e., 0, 1,     

then  0,1   

   

    

2, 1 1 0, 1 1 1

0, 1 0 0,1 .

   
     

            

  

 

(4)  If  0   and  0 , 1,    then  

   , 1,0      i.e.   1,0 0    

   

     

2

0

, 1 1 1, 1 1 1

1, 1 1 1 1, 1 1 1,0 .

   
     

            

 
      
 

 

(5)  If     and   0 , 1,    then 

   , 0,1      i. e.   0,1    

   

     

2, 1 1 0, 1 1 1

0, 1 0 0, 1 0,1 .

   
  



   
            

 
    
 

 

1, 
 
then  , .      i.e. 

 1      

   

 

1
2 1 2

2

, 1 1 , 1 1

, 1 1 .

   

 

    

  


    
           
   

 
    
 

 

Definition 4.1: Let     , 1, ...,
j jj j n    

 
be 

PFVs and let : ,nPFWG   then the Pythagorean 

fuzzy weighted geometric aggregation operator can be  

define as: 

        1 2
1 2 1 2, ,..., ... n

n nPFWG
  

              (9) 
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 Where   1 2, ,...,
T

n      is the weighted vector of 

 1,2,3,...,j j n  with condition   0,1j   and  

1

1.
n

j
j




   If   1 1 1, ,...,
T

n n n
   , then the PFWG 

operator is converted to PFG operator which is defined 

as:  

             
1

1 2 1 2, ,..., ... n
n nPFG p p p            (10) 

Example 4.2:  Let 

   

   

1 2

3 4

0.4,0.6 , 0.5,0.7 ,

0.3,0.8 , 0.2,0.9

 

 

 

 
 

Thus 

 

 

       

   

   

 

2

1 2 3 4

4 4

1 1

0.1 0.2 0.3 0.4

0.1 0.2

0.3 0.4

, , ,

, 1 1

0.4 0.5 0.3 0.2 ,

1 1 0.36 1 0.49

1 0.64 1 0.81

0.2907,0.8267 .

jj

jj

w

j j

PFWG

 



   

 
 

 
    
 
 

   
 
     
 

  



 

Theorem 4.3: Let  ,
j jj      (j= 1,2,…n) are PFVs, 

then their aggregated value by applying PFWG operator is 

also a PFV , and 

       2
1 2

1 1

, ,..., , 1 1
jj

jj

n n

n
j j

PFWG
 

 
    

 

 
    
 
 

     (11) 

and also the weighted vector of  1,2,...,j j n   is 

 1 2, ,...,
T

n    with some conditions    0,1j 

and
1

1.
n

j
j




  

Proof: By mathematical induction we can prove that 

equation (11) holds for all n. First we show that equation 

(11) holds for n= 2, since

 

So      
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 

 
 
 

    
        

    
 

            
    

 
    
 
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Thus equation (11) true for n= 2. Let us suppose that 

equation (11) true for n=k. Then we have 

   2
1 2
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, ,..., , 1 1
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Now we show that equation (11) true for n=k+1. 
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 
    
 
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Hence equation (11) holds for n = k+1. Thus 

equation (11) holds for all n 

Example 4.4: Let   1 0.4,0.8 ,   2 0.5,0.7 ,   
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 3 0.6,0.7   ,   4 0.7,0.4    be four PFVs, and their 

weighted vector is  0.1,0.2,0.3,0.4
T

  , then if 

we apply the PFWG operator we get the Pythagorean 

fuzzy  

value. Thus 

 

 

       

   

   

 

2

1 2 3 4

4 4

1 1

0.1 0.2 0.3 0.4

0.1 0.2

0.3 0.4

, , ,

, 1 1

0.4 0.5 0.6 0.7 ,

1 1 0.64 1 0.49

1 0.49 1 0.16

0.5907,0.6315 .
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 
     
 

  



 Theorem 4.5: Let    , 1,2,3,...,
j jj j n     be  

The PFVsand the weighted vector of     

 1,2,...,j j n 
 

is  1 2, ,...,
T

n     with some 

conditions   0,1j    and  
1

1.
n

j
j




   If   

 1,2,...,j j n  are mathematically equal. Then 

 1 2, ,..., nPFWG      

Proof: As we know that  

  1 2
1 2 1 2, ,..., ... .n

n nPFWG
  

           

Let  1,2,3,...,j j n   , then  
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Example 4.6: Let     1 20.4,0.8 , 0.4,0.8 ,    

   3 40.4,0.8 , 0.4,0.8    be four PFVs, and their 

weighted vector is  0.1,0.2,0.3,0.4
T

  . If we apply 

the PFWG operator we get the Pythagorean fuzzy valve. 
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Theorem 4.7: Let   ,
j jj      1,2,...,j n be the 

PFVs and let the weighted vector of  1,2,...,j j n  is

 1 2, ,...,
T

n    such that  

 0,1j  and

1

1.
n

j

j




   If 
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Then 

      1 2, ,..., ,  for all .nPFWG           (13) 

Proof : As we know that 

      min max ,
j j jj j

                  (14) 

        min max  
j j jj j

             (15) 

 From equation (14), we have 
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Now from equation (15), we have 
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         2

1

min 1 1 max
j

j j j
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j jj
    



       (17) 

Let     1 2, ,..., , ,w nPFWG        
 

then, 
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S
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Thus     .S S   Again   
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 Thus     .S S    If     S S   and 

   .S S    Then 

            1 2, ,...,w nPFWG                (18) 

If      ,S S    then 
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Since 

       
2 2

2 2 max min .
j jj jH H            

Thus 

       1 2, ,...,w nPFWG                 (19) 

If     S S   , then 
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Thus 

       1 2, ,..., nPFWG            (20) 

Thus from equation (18) to (20), we have 

 1 2, ,..., ,  for all .nPFWG       
 

Theorem 4.8: Let     , 1,2,3,...,
j jj j n      

And  , 1,2,3,...,
j j

j j n
 

   
  
  
 

be the two 

collection of PFVs. If  
j j

 
     and  .

j j
 

    

Then 

          1 2 1 2, ,..., , ,...,n nPFWG PFWG             (21) 

Proof: Since,  .
j jj j

and  
       and Then 
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Now by using the non-membership function we have 

           
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  (23) 

Let 

       1 2, ,..., nPFWG           (24) 

and 

     1 2, ,..., nPFWG              (25) 
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Then from equation (21) we have,    S S  . If 

    ,S S  then 

          1 2 1 2, ,..., , ,...,n nPFWG PFWG              (26) 

If      ,S S   then 
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Since     2 22 2 .H H   
      

       Thus 

          1 2 1 2, ,..., , ,...,n nPFWG PFWG             (27) 

Thus from equation (26) and (27),  we have 

   1 2 1 2, ,..., , ,...,n nPFWG PFWG        
 

Example: 4.9: Let    1 20.4,0.6 , 0.5,0.7 ,    

   3 40.3,0.8 , 0.2,0.9   ,  1 0.7,0.5   

     2 3 40.8,0.3 , 0.6,0.5 , 0.5,0.5        and also 

 0.1,0.2,0.3, 4 .0.   

Now using the PFWG operator we get the following 

result. 
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1 1 0.36 1 0.49

1 0.64 1 0.81

0.2907,0.8267 .

jj

jj

w

j j

PFWG

 



   

 
 

 
    
 
 

   
 
     
 

  



 

Again 

 1 2 3 4, , ,wPFWG       

 

 

2
4 4

1 1

, 1 1
j

j

jjj j





  

 

 
       

  
 

 

       

   

   

 

0.1 0.2 0.3 0.4

0.1 0.2

0.3 0.4

0.7 0.8 0.6 0.5 ,

1 1 0.25 1 0.09

1 0.25 1 0.25

0.6000,0.4695 .

   
 
     
 

  



 

5. An Application of the PFWG Operator to 

MAGDM Problem 

In this section, we discuss an application of the PFWG 

operator to MADM. Now we are using Pythagorean fuzzy 

information to develop the MADM. 

Algorithm: Let M = {M1, M2, M3,…,Mn}  be a finite set 

of  n alternatives, and suppose O = {O1, O2, O3,…,Om} is 

a finite set of  m   attributes , and  1,..., kD D D   be the 

set of k experts. 

Let   1 2, ,...,
T

m      be the weighted vector of the 

attributes  1,..., ,jO j m   also   0,1j    and   

 1 2
1

1, , ,...,
m T

j k
j

    


  be the weighted vector of 

the   1,..., ,sD s k   also   0,1s    and 
1

1.
k

s
s




  

This method have the following steps. 

Step 1: Construct the Pythagorean fuzzy decision matrices 

   1,2,...,
ss

ij
n m

D d s k


  
  

for decision. If the criteria 

have two types, one is benefit criteria and other  is cost 

criteria, then the decision maker transform the 

Pythagorean fuzzy decision matrix,  
 

,
ss

ij
n m

D d


 
  

 

into the normalized Pythagorean fuzzy decision matrix,  

 ss
ij

n m

R r


 
  

 , where 

   
,  for benefit  criteria 

1,2,..., ,
,  for cost criteria ,

ij js
ij c

ij j

d O
r j m

d O


 


 

where
c
ijd  be the complement of .ijd  If all the criteria have 

the same type, then there is no need of normalization. 

Step 2: In this step we are going to apply the PFWG 

operator tocombined the entire individual PFDMS 

 ss

ij
n m

R r


 
   1,2,...,s k into the collective  

PFDM  ,ij n m
R r


      with  
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condition  
1,2,.., ,

, .
1,2,...,

ij ij ij

i n
r

j m
 

 
  

 
 

Step 3:  Aggregate all the preference values  

 
1,2,.., ,

, .
1,2,...,

ij ij ij

i n
r

j m
 

 
  

 
by using the PFWG 

operatorand get the overall preference value 

( 1,2,3,... )ir i n analogous to the alternative Mi 

( 1,2,3,... ).i n  

Step 4: In this step we determine the scores of 

ri ( 1,2,3,... ).i n  If there is difference between two or 

more than two score functions then we have must to 

calculate the accuracy degrees. 

Step 5: In this step we arrange the score values of each 

alternative by descending order and chose the best 

alternative by maximum value of score function. 

Example 5.1: The plant location selection 

problem.Suppose a company is searching a geographical 

place for new plantation. The company wants to plant 

these plants in the following best conditions, such as, low 

cost, best climatic conditions, having safety from 

surrounding. There are many factors that must be 

deliberated while choosing a appropriate place for a plant, 

now we are going to choose the most common and 

important four attributes. 

1. O1 : Expert workers, 

2. O2 : Transport facilities, 

3. O3 : Investment cost, 

4. O4 : Expansion possibility. 

where O1, O3are cost criteria, and O2, O4 are benefit 

criteria. After preliminary screening, five locations 

1 2 3 4 5, , , ,M M M M M
 

are selected for additional 

estimation. A group of three selection makers,  

 1,2,3kD k  is choosing to choose a best option out of 

these five places. Let   0.2,0.3,0.5
T

   is the weighted 

vector of  1,2,3kD k   and   0.1,0.2,0.3,0.4
T

  is 

the weighted vector of   1,...,4 .jO j   

Step 1: The decision makers give his decision in the 

following tables. 

Table 1:    Pythagorean fuzzy decision matrix D1 

 O1 O2 O3 O4 

M1 (0.8,0.3) (0.8,0.4) (0.7,0.4) (0.6,0.5) 

M2 (0.7,0.3) (0.8,0.4) (0.6,0.5) (0.7,0.3) 

M3 (0.5,0.5) (0.6,0.4) (0.7,0.4) (0.8,0.3) 

M4 (0.6,0.5) (0.7,0.4) (0.8,0.4) (0.8,0.5) 

M5 (0.6,0.6) (0.7,0.3) (0.8,0.3) (0.8,0.5) 

 

Table 2:    Pythagorean fuzzy decision matrix D2 

 O1 O2 O3 O4 

M1 (0.2,0.8) (0.7,0.4) (0.4,0.6) (0.6,0.5) 

M2 (0.2,0.8) (0.8,0.4) (0.5,0.6) (0.7,0.3) 

M3 (0.5,0.6) (0.7,0.3) (0.4,0.6) (0.8,0.3) 

M4 (0.3,0.7) (0.6,0.4) (0.4,0.7) (0.8,0.5) 

M5 (0.4,0.6) (0.8,0.2) (0.3,0.8) (0.8,0.4) 

 

Table 3: Pythagorean Fuzzy Decision Matrix D3 

 O1 O2 O3 O4 

M1 (0.3,0.7) (0.6,0.4) (0.4,0.6) (0.6,0.5) 

M2 (0.3,0.8) (0.7,0.4) (0.3,0.8) (0.9,0.2) 

M3 (0.5,0.7) (0.6,0.5) (0.4,0.7) (0.8,0.3) 

M4 (0.4,0.7) (0.8,0.4) (0.1,0.9) (0.7,0.5) 

M5 (0.5,0.6) (0.9,0.2) (0.2,0.8) (0.8,0.2) 

 

Table 4: Normalize PFDM R1 

 O1 O2 O3 O4 

M1 (0.8,0.3) (0.8,0.4) (0.7,0.4) (0.6,0.5) 

M2 (0.7,0.3) (0.8,0.4) (0.6,0.5) (0.7,0.3) 

M3 (0.5,0.5) (0.6,0.4) (0.7,0.4) (0.8,0.3) 

M4 (0.6,0.5) (0.7,0.4) (0.8,0.4) (0.8,0.5) 

M5 (0.6,0.6) (0.7,0.3) (0.8,0.3) (0.8,0.5) 

 

Table 5:    Normalize PFDM R2 

 O1 O2 O3 O4 

M1 (0.8,0.2) (0.7,0.4) (0.6,0.4) (0.6,0.5) 

M2 (0.8,0.2) (0.8,0.4) (0.6,0.5) (0.7,0.3) 

M3 (0.6,0.5) (0.7,0.3) (0.6,0.4) (0.8,0.3) 

M4 (0.7,0.3) (0.6,0.4) (0.7,0.4) (0.8,0.5) 

M5 (0.6,0.4) (0.8,0.2) (0.8,0.3) (0.8,0.4) 

 

Table 6:    Normalize PFDM R3 

 O1 O2 O3 O4 

M1 (0.7,0.3) (0.6,0.4) (0.6,0.4) (0.6,0.5) 

M2 (0.8,0.3) (0.7,0.4) (0.8,0.3) (0.9,0.2) 

M3 (0.7,0.5) (0.6,0.5) (0.7,0.4) (0.8,0.3) 

M4 (0.7,0.4) (0.8,0.4) (0.9,0.1) (0.7,0.5) 

M5 (0.6,0.5) (0.9,0.2) (0.8,0.2) (0.8,0.2) 

Step 2: Apply the PFWG operator to collective all the 

normalized individual Pythagorean fuzzy decision 

matrices, 
 ss
ij

n m

R r


 
  

  into the collective PFDM 

.ij n m
R r


   
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Table 7:    Collective PFDM R 

 O1 O2 O3 O4 

M1 (0.7,0.3) (0.7,0.4) (0.7,0.4) (0.7,0.5) 

M2 (0.8,0.3) (0.7,0.4) (0.7,0.4) (0.8,0.3) 

M3 (0.6,0.5) (0.7,0.4) (0.7,0.4) (0.8,0.3) 

M4 (0.7,0.4) (0.7,0.4) (0.8,0.3) (0.7,0.5) 

M5 (0.6,0.5) (0.8,0.2) (0.8,0.3) (0.8,0.3) 

 

Step 3: In this step we aggregate all the preference values 

ijr ( 1,2,...5, 1,...,4)i j  by using the PFWG operator 

and get the overall preference value  ir  

( 1,2,3,4,5)i  analogous to the alternative 

iM ( 1,...,5)i   

     

   

1 2 3

4 5

0.700,0.436 , 0.748,0.354 , 0.727,0.377 ,

0.728,0.421 , 0.777,0.312

r r r

r r

  

 
 

Step 4:  In this step we determine the scores of 

( 1,...,5)ir i  . 

 

Step 5: Now we arrange the score function of each 

alternative in the form of descendent order and chose the 

best alternative by maximum value of score function. 

1 4 3 2 5.L L L Lr r r r r   
 

Then 

5 2 3 4 1.M M M M M      Since  5M   has the highest 

value. Thus  5M   is the best location among the stated 

locations for a company to plant the plants. 

6. Conclusions 

In this study, we have developed PFWG operator. We 

have explored different properties of this proposed 

operator. We have also utilized PFWG operator to 

multiple attribute decision making based on Pythagorean 

fuzzy information 
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