
The Nucleus 53, No. 1 (2016) 56-63

www.thenucleuspak.org.pk

56

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Paki stan

The Nucleus

C++ BUG CUB: Logical Bug Detection for C++ Code

A. Raana
1
,

*
M. A. Azam

1
, M. A. Ghazanfar

1
, A. Javed

1
, Y. Amin

1
 and U. Naeem

2

1Faculty of Telecom and Information Engineering, University of Engineering & Technology Taxila, Pakistan

2School of Architecture, Computing and Engineering, University of East London, London, U.K

ayesha.raana@yahoo.com; awais.azam@uettaxila.edu.pk; mustansar.ali@uettaxila.edu.pk; ali.javed@uettaxila.edu.pk;

yasar.amin@uettaxila.edu.pk; u.naeem@uel.ac.uk

A R T I C L E I N F O

Article history :

Received : 25 August 2015

Revised : 29 February, 2016

Accepted : 08 March, 2016

Keywords :

Software quality,
Logical bugs,

Tokenization,

Classification,
Decision tree,

Dependency,

Function

A B S T R A C T

Quality is seen as one of the key aspects for efficient and robust Software development. One of
the ways to ensure quality is to ensure that developed software systems’ code istotally free of

syntax, real time and logical bugs. Despite careful development process, there is always room

for these bugs to stay in developed system. Many of the syntax and logical bugs escape from
detection in testing phase, which has great impact on the quality and reliability of system and

business value as well. These are usually Logical Bugs, which can be difficult to find and which

can lead to frustration for the development team. To alleviate the overhead of static analysis of
code performed by the developer to detect logical bugs, a system is proposed to detect these

bugs in C++ code. The system has been engineered using tokenization concept -prerequisite for

bug detection- followed by rule-based algorithm that is designed for logical bugs’ detection. A
decision tree based approach has also been applied in order to classify the detected bugs. The

system is also able to extract dependency among all the methods/functions written in the input

code. Both tasks; bug(s) detection and function dependency are performed in one pass which
makes the system efficient.

1. Introduction

Software systems are the backbone of every field in

this modern age of technology, and so reliability of

software systems is becoming ever important.

Unfortunately, all types of software bugs either in design,

code or integration of software units, continues to be

sporadic and account for the key causes of system

failure/crash. Most important bugs in code reduce

software quality, increase the maintenance cost and

become the cause of development schedule suspension.

Department of Commerce National Institute of Standards

and Technology of US conducted a study and concluded

that software code bugs are so ubiquitous and harmful

that they annually cost $59 billion that is about 0.6% of

the gross domestic product [1]. Detection and fixing of

the bugs is really time consuming and one of the most

difficult tasks in Software Development Life Cycle

(SDLC) [2].

Software defects/bugs are actually programming

errors or failures in computer program or system that

causes unexpected results or behaviors. A software

system may suffer from many types of bugs, depending

upon how the developer counts. Most common types are:

Compilation/Syntax, Execution/Run-time and Logical

errors. Novice developers are usually found stressed about

syntax and logical bugs appearing in their written codes.

Time spent on correcting these bugs may dishearten them

with programming. Almost every compiler generates

error messages about syntax violation and memory

exceptions but excessive logical errors are least likely to

be caught during the compilation phase because this phase

mainly focuses on specification confirmation. Currently

to detect logical bugs, static code review [3] is expected

which is off-line task conducted by the code reviewers

without compiling or executing the code. During code

review activity, reviewer reads the code line by line,

understands its behavior as well as structure and then be

able to detect the logical and real time bugs after a

tiresome manual review analysis.

With aim of minimizing the logical bug rate, there is a

need of such system that will efficiently catch these bugs

and then classify them. In order to relieve the developer‟s

headache of manually detecting and then correcting those

bugs that are beyond the compiler‟s scope, a system is

proposed to detect most commonly occurring logical bugs

in C++ codes. These are: uninitialized variables, extra

semicolon in front of conditional loops, missing „break‟

key word in switch statement cases and use of assignment

operator in if-conditional statement to check the equality

[4-6]. The proposed system also has the feature to extract

dependency among all the methods/functions to

understand structure of the input code before making any

 Corresponding author

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

 57

change in the code for correcting bugs. Work done in this

paper, subdues novice developers from the detection of

above mentioned logical bugs.

This paper comprises of six sections. Section II

provides critical review of the related work done in the

field of defect detection of software system and

dependency among all the methods/functions in the C++

code. Section III, comprises on the detailed description of

the Logical Bugs to be detected. Section IV, explains the

methodology and Section V describe the results of the

proposed work in the form of percentage accuracy. In

Section VI closing annotations are given sustaining future

research directions.

2. Related Work

A plethora of research has been done in the field of

Software defect detection especially for syntax errors. A

lot of approaches and tools have been developed by using

the various Data Mining techniques.

Kartha et al. [7] describe that the process of collecting

data from different perspectives, examining it and then

summarizing that data into useful and meaningful

information is called Data Mining. This data mining

process makes it possible to understand the relationship

between gathered data and disclose hidden patterns and

trends. Data mining techniques are mature enough that by

applying these on historical data of defects, most

commonly occurring causes of defects can be identified.

The commonly used data mining techniques to predict

defects and for untailored analysis are Classification,

Clustering [23] and Association Mining [8]. Kartha et al.

proposed a tool for automatic defect cause analysis of

software defects and for this purpose historical data is

used as an input. The tool comprises three stages, 1.

Hadoop File System [9] and Map reduce [10] are used to

store and process the defect dataset. 2. Defects

Classification 3. Fault Tree Analysis. Decision Tree

algorithms are used for last two stages. Also the tool has

two segments, one is Training and the other is

Operational. In Training segment the root cause for each

defect is known and a model is formed for unseen data

whereas in Operational segment unseen defects are fed to

the system and the system performed all its processing as

per learning from the Training phase. These defects are

visible to the analyst as dashboard and end result of this

phase is root cause report.ID3 (Iterative Dichotomiser 3)

decision tree algorithm [11] is used to classify the defects

and to generate the fault tree for the identification of root

causes.

Owens et al. [12] in their research work presented the

survey analysis of using the tool „PURIFY‟ to find out the

reasons of memory access errors in released software

systems. Five types of memory errors are considered and

classified, these are: Uninitialized memory read, Array

bounds read, Array bounds write, free memory read and

Free memory write error. These errors are intentionally

excluded from the Operating system library. The 1
st

combination of software and hardware system on which

PURIFY is available is Sun SPARC workstations running

the UNIX operating system version SunOS 4.1.3. Only C

and C++ programs are scrutinized and memory access

type errors along with their relevant libraries are taken

into account in each software package. The tool proposed

by Owens et al. [12] deals only with memory errors and

doesn‟t support other logical errors detection.

Dommati et al. [13] worked in their paper on analysis

and classification of network bugs using Naïve Bayes

approach [14]. They achieved feature extraction and

feature selection based upon the static analysis of bug

reports after performing noise reduction in data. With the

help of bug reports, feature extraction is done according

to the operating system, product related bugs and different

networking protocols (BGP, IPv4, IPv6, TCP) to which

the reports fit in. „Information Gain‟ criteria are used to

rank different bug specific features. They proved that only

„Word Information‟ is not enough to rely upon for

multiclass classification, rather semantics of the bug

information is necessary. Two event models namely

„Bernoulli‟ and „Multinomial‟ are considered well for

classifying the extracted features. Also by the use of these

event models better accuracy can be achieved on the basis

of extracted features as compared to the use of only Word

Information for classification.

Naidu et al. [15] proposed an approach for defect

detection using Decision Trees. They used ID3 [11] to

classify defects after identification. The following

attributes of data were used to classify the defects:

„volume‟, „program length‟, „difficulty‟, „effort‟ and „time

estimator‟. The identified classes were: Blocker Type,

Critical Type, Major Type, Minor Type and Trivial Type.

A pattern mining approach such that Association Rule

mining was used to identify the defect patterns in the data

set file. Finally they employed Quality Matrices (Defect

Density and Defect Removal Efficiency) to assure the

quality of their proposed system. Their proposed system

proved useful in finding out the severity of the detected

defects.

Liu et al. [16] made a comparative study between

CBA2 and other Rule Based Classification methods to

ensure that either Classification algorithms based on

Association rules are appropriate for predicting software

faults or not. They also investigated either Rule Set

learned by one data set of defects was valid for other data

sets or not. The result of the experiments conducted on

data sets was compared with other classification

algorithms and confirmed agreeable performance without

any loss of comprehensibility.

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

58

Wang et al. [17] proposed a new tool to extract

symbol level and subsequently module level dependency

from the large C/C++ written programs. The system first

finds symbol level dependency using LLVM [18] and

then these separate pieces of symbol-level dependency are

connected to get the module-level dependency. The

system‟s performance is evaluated on the Chromium

Project containing about 6 MLOC.

In view of the above mentioned work, it is obvious

that there is no clear evidence that one technique for bug

detection is better than the others when used

independently. The experiments in the above mentioned

related work were conducted in different contexts:

different programs were examined, detection of different

types of bugs was done, and different techniques were

used in data mining domain for bug detection. As the

literature reveals, the research done for the detection of

logical bugs is very limited so there is still room to work

for the development of such system that will efficiently

detect the logical bugs in source code of any

programming language.

3. Logical Bug Types

Logical bugs are not detectable during compilation of

the code so the program compiles and runs successfully.

However, it won‟t generate the expected results. The

proposed system is efficiently able to detect the most

commonly occurring logical bugs mentioned below [24].

3.1 Uninitialized Variable

A variable is read before its actual value written to the

memory. In C++ codes such variables contain dummy

values except zero and at the end cause the program to

produce unexpected results.

Fig. 1: Uninitialized variable

Fig. 2: Uninitialized variable

Considering the code snippet in Fig. 1 the variable

„count‟ may contain any value within the range of „int‟

data type, and in that case the condition of loop can never

be true. In Fig. 2 the variable „sum‟ will not actually

contain the sum of the numbers entered by the user

because in C++ the assignment is one time deal. In

example code snippet, „x‟ and „y‟ are not initialized before

assigning to the variable „sum‟ so the result will be any

random value without considering the user inputs.

3.2 Extra Semicolon

In C++ codes, semicolon doesn‟t go after conditional

loops except the do-while. The program will function

abnormally if you put semicolon in front of either „for‟ or

„while‟ loop. The code written in Fig. 3 will just output

„10‟ rather than the sequence from 0 to 9.

Fig. 3: Extra semi colon after loop condition

3.3 Missing ‘break’ keyword in Switch Statement

In C++ programs, the cursor does not jump out of the

scope of switch statement until the „break‟ keyword is

found; otherwise all the cases will be executed one after

the other from where the match found. The output

generated by the code written in Fig. 4 is „One‟ and „Two‟

even though only „One‟ is expected as the final output.

Fig. 4: Missing „break‟ in switch structure

3.4 Assignment Operator in ‘if statement’

In computer languages, single equal sign always

indicates Assignment, Not Equality. If a single equal sign

is placed to check the equality, the program will assign

the value from right side to the identifier on the left side

and the result of such statement will be true.

inta,b=1, c=0;

cout<<”Enter the Value for a”;

cin>>a;

if (a=5)

{c=a+b}

Fig. 5: Assignment operator in if statement

The output of the code written in Fig. 5 will always be

„6‟, because on every execution of the if-statement the

variable „a‟ is assigned the value 5 rather than checking

whether the value of the variable „a‟ entered by the user is

5 or not.

intcheck = 1;

switch(check)

{case 1:

cout<<”One”<<endl;

case 2:

cout<<”Two”<<endl;

break;}

int a;

for(a=0; a<10;a++)

{

Cout<<”Value=” a<<endl;

}

intx,y;

int sum = x+y;

cout<<”Enter two numbers to

sum”;

cin>>x>>y;

cout<<”The Sum is: “ <<sum;

int count;

while(count<=10)

{

Cout<< “value= ” count<<endl;

Count++;

}

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

 59

Fig. 6: Proposed compiler

In the case of above mentioned „Non-Errors‟ errors,

the compiler doesn‟t detect any problem and no error

message will be produced that is such errors are not errors

as far as compiler is concerned. After getting the output,

entire burden is on the programmer to detect what is

wrong with the code. The best way to handle such errors

is to avoid them in the first place. In this research work, a

software framework is proposed which handles logical

errors automatically just by taking the C++ code as input.

The developer need not to go through the code line by

line to detect the exact statement suffering of logical bug.

4. Proposed Compiler

Fig. 6 shows the structure of proposed compiler. It

works in three steps: 1) Input C++ Code, 2) Processing

(Bug Detection and Function Dependency), and 3)

Output.

i. Input component is actually user interface where an

untested C++ code file is fed to the system to check

any possible logical bugs mentioned above;

ii. Processing unit is core of the system and comprises

two sub-parts, Logical Bug Detection and Function

Dependency.

Bug detection further consists of three main steps:

a) Tokenization, b) Algorithm to match Buggy Token

c) Classification.

4.1 Tokenization

M. Johnson and J. Zelenski in their proposed work

[19] explained lexical analysis as a process where the

stream of characters making up the source program is

read from left-to-right and grouped into tokens. Tokens

are sequences of characters with a collective meaning [19]

and Tokenization of the text input file of C++ code is

prerequisite to bug detection. Here Tokenization process

breaks the stream of input code text into words, phrases,

symbols or other meaningful rudiments called Tokens.

This process ignores the comments, new line space, tab

space and also trim the input code. The Token‟s list then

becomes input for further processing such as parsing or

text data mining [20]. Common concept of Tokenization

is to separate tokens by doing analysis based upon white

space characters, line breaks or on the basis of any other

delimiter such as some punctuation marks. This concept is

applicable for doing tokenization of plain text written in

English language where there is a space after each word

but same logic is inapplicable for high level languages

like C++ because there is no such defined pattern of

spaces, new line characters or punctuation marks [25].

While considering a semantically and syntactically correct

code we were unable to rely on spaces or anything like

that for tokenization. To overcome this bottleneck

Algorithm-1 is proposed, using this algorithm the key

which always to be looked for in a code for tokenization

is the next expected token which has the probability to

occur after getting one token.

4.2 Algorithm 1: Tokenization

Input: C++ Code

Output: T= {t1, t2, t3. . .tn}, Tokens of input code

1: Trim the Input code

2: Break the Trimmed code into character stream

3: length of character stream Array

4: repeat

5: Let C: C= {c1, c2, c3 . . .ck} take characters

 one by one

6: concatenate characters

7: until all characters convert into meaningful tokens

8: return {t1, t2, t3, . . ., tn}

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

60

4.2 Algorithm to Match Buggy Token

To detect the logical bugs a very simple algorithm is

designed which work somewhat like other string

matching algorithms. After successful tokenization

process the array of tokens is passed to the bug detection

algorithm that scans the token array from start to end

aiming to get exact match of the logical bugs‟ tokens with

the written pattern string checks in the proposed system.

If match found, the system highlights the type of bug

detected and displays the line number in the source code

containing that bug on the user dashboard. The designed

algorithm minimizes the total number of comparisons

between tokens array and bug patterns defined in the

algorithm by continuing from the next token in case of

any faulty token found. While checking for logical bugs,

binary data set file is being updated for each input code

either match found or not.

4.3 Algorithm 2: Matching Algorithm

Input: T= {t1, t2, t3. . .tn}, Tokens

Output: Highlighting the line number of Buggy token

1: calculate length of array containing tokens T

2: repeat

3: Get tokens one by one from the array T and check

 either bug condition true or not

4: until n tokens are checked

5: return Line number of buggy token or No bug

 found

4.4 Classification

Classification technique [4] assigns items in a set to

target classes. After one time identification of classes, the

system deduces the rules to preside over these classes.

Classification approaches are fed with the training set

where all data and their associated classes are pre known

and the Classification algorithm build model on the basis

of its learning, which then can be used for unseen data. In

software engineering, classification algorithms have been

used to engineer software prediction models which are

used to predict software defects and for such other

purposes. Here after full execution of bug detection

algorithm, the dataset file is fed to WEKA and decision

tree C4.5(J48 in WEKA) is selected to classify the

detected bugs. The classes build based upon the type of

bugs to be detected. The Data Set used here is Binary and

artificially created in parallel to the execution of Bug

Detection code. As the dataset is not too large, C4.5

algorithm is quite suitable to be used for the classification

[26]. Classification part has two folds:

 Training Fold: in which classes are pre labeled and

the decision tree is trained according to this known

data set.

 Operational Fold: in this fold any unseen data of

logical bug(s) is entered to predict the class of the

detected bug on the basis of learning from Training

Fold.

Function dependency is to extract dependency among

all the methods/functions written in the input code.

Dependency can be explained as, suppose there are two

methods „X‟ and „Y‟ in the input code, if any change in

the method „X‟ forces to modify the method „Y‟

accordingly to maintain the code‟s structure and to keep

it in exact functionality as well then there is dependency

from Y to X.

Before making any change in the code, first key step

is to endow the user with precise flow of the code.

Dependency extraction makes the structure of the input

code understandable and will help the user while

correcting the bugs detected by first part of the proposed

system. To check dependency level of the inputted code,

the system first scans for all the functions used and then

finds dependent functions based upon the definition of

each function prior enlisted.

Algorithm 3: Function Dependency: Find Function

Definition in the complete code

Input: T= {t1, t2, t3. . .tn}, Array of Tokens

Output: Function name, Start point and End point

1: repeat

2: find parenthesis „()‟ in the array T

3: if „()‟ NOT∈ keywords {if, else if, for, while, do}

 THEN

 Loop through Left Tokenized Array

 IF semicolon

 THEN

 BREAK

 ELSEIF Function opening Braces

THEN

SAVE Function Name is COMBOBOX Item

 SAVE Function Starting point

 LOOP

Repeat step 3

OR

IF Function Closing Braces

 THEN

SAVE Function Ending point

NEXT

 NEXT

NEXT

END

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

 61

Algorithm 4: Function Find DEPENDCE Function CALL

Input: Function name, Start point and End point

Output: Function Body and Dependent Functions

GET Selected Function NAME in COMBOBOX

GET starting and ending points of the Selected Function

LOOP through Tokenized Array from Function Starting

to ending point

 ADD in codesnap

 Find parenthesis in the selected

Token array

 IF parenthesis NOT belong to if, else if, switch,

for, while, do

THEN

ADD identifier name in ftndep

 NEXT

 DISPLAY codesnap

 IF ftndep NOT Empty

THEN

 DISPLAY codesnap

 ELSE

DISPLAY "No Function is depending"

END

Output is the dashboard for the user on which three

things are displayed; one is the window containing the

bug type along with the line number of the source code

suffering of that detected bug, second is function

dependency view showing the body of every function and

all its dependent function(s) and third is the tree view of

detected bug‟s classes.

5. Results and Discussion

Proposed system is evaluated on the basis of two static

code metrics; LOC (Line of Codes) and Source Code

Complexity measure by total number of functions defined

in the input code.

The system is actually proposed for novice developers

who mostly start their software development life in their

university time period. Here to evaluate the proposed

system, C++ programs written by engineering university

students (2
nd

 year) are executed to get results of the

system. Multiple C++ program writing tasks were

assigned to the students. They were asked to produce the

predefined output of the given programming tasks also to

keep record of the correction attempts. The codes are of

different lengths and different from each other but

following same guideline and format for example there

must not be spaces at the end of code. It was observed

that 80% of the students had to manually review their

written code more than one time to correct the logical

bugs to get the required output. The proposed system

reduces this tiresome manual review activity for bug

detection. In 2
nd

 phase of program writing students were

asked to intentionally add some logical bugs and to keep

the record of these bugs. Each program file is fed to the

system to calculate system accuracy for bug detection

considering LOC as parameter.

5.1 Experimental Results

The following general equation is used to calculate

Accuracy of the system :

Accuracy% = (Number of bugs detected /

 Total number of Bugs fed to the system) * 100

Table 1: System Accuracy with respect to lines of codes (LOC)

Paramet
er

LOC Actual
Bugs

Total
Bugs

Detected
Bugs

Total
Detected

Bugs

True
Positive

%

Program

File < =
100

LOC

94 3

9

2

7 77%
74 2 2

46 3 2

69 1 1

Program

File >

100

LOC

172 3

22

1

15 68%
205 6 5

143 5 4

658 8 5

Every existing C++ editor must contain compiler for

syntax error detection and the detection of Syntax errors

is considered standard. Due to this standard consideration

the proposed logical bug detector‟s accuracy rate is

compared with the detector of syntax errors. Neelima et

al. [21] proposed a system shown in Fig 7 for the

detection of syntax errors in C language codes. Here the

proposed system (C++ BUG CUB) is compared with

Neelima‟s system. The feature Accuracy of both systems

is evaluated taking total bugs into consideration. Table 2

and

Fig 8 below, reveals that the proposed system for logical

bug detection is almost reaching the accuracy level for the

detection of syntax bugs.

Fig. 7: Neelima‟s proposed system

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

62

To calculate complexity of any input code, Sequential

Cyclomatic Complexity (SCC) [22] which considers

Table 2: C++ BUG CUB vs Neelima‟s system

System
Number of
Bugs

Accuracy %

C++ BUG CUB
Bugs<=15 77%

Bugs>15 68%

Neelima‟s
Bugs<=15 70%

Bugs>15 75%

chain of function calls is used in this research work and

shown in Equation 2.

 SCC(fn)=CC(fncg)+ 𝐶𝐶(𝑓𝑛(𝑖))𝑛
𝑖=1 (2)

(Here fncg is calling function, and n is number of function

calls.)

Ultimately Sequential CC of any program is equal to

sum of SCC of all the functions of the program as shown

in Equation 3.

 SCC(program)= 𝐶𝐶(𝑓𝑛(𝑖))𝑚
𝑖=1 (3)

(Here „m‟ is the number of function.)

Fig. 8: C++ BUG CUB vs Neelima‟s system

Table 3 shows that proposed system is almost taking

same time to execute the input code of lines below 1500.

SCC depends upon total number of calling and called

functions, as complexity of the input code increases

execution time may increase in seconds but not too much.

Also the calculated time values vary depending upon the

structure of the input code that is indenting of the code.

This is because input code is trimmed and white spaces

and comments are ignored before the execution of rule-

based bug detection algorithm.

7. Conclusion and Future Work

In this paper, a system is proposed to lessen the

burden for developers to detect the most commonly

occurring logical bugs in C++ code, which escape in

testing phase and ultimately producing the output

not according to the requirement. Currently the proposed

system is able to detect four types of logical

bugs (Uninitialized Variables, Extra Semicolon go after

Table 3: Sequential cyclomatic complexity (SCC) and execution time
of the System with respect to LOC

Parameter LOC NOF
Dependent
Function

SCC
Execution
Time(Sec)

Program

File<=100

LOC

94 2 1 on main 1 10

74 2 1 on main 1 9

46 2 1 on main 1 10

69 3 2 on main 2 10

Program
File>100

LOC

172 2 1 on main 2 10

205 5 4 on main 4 9

143 2 1 on main 1 9

658 7 6 on main 5 10

conditional loops, Assignment operator in if-conditional

statement to check equality, and missing break keyword

in switch statement cases). The system is engineered

using the concept of Lexical Analysis and Tokenization,

algorithm for actually detecting bugs and to extract

function dependency of input C++ code is proposed and

in the end decision tree is used to classify the detected

bugs. A data set file is kept updated after the execution of

any C++ code file either containing logical bug or not.

The sample C++ codes used as input to the developed

system are divided into two categories: 1. codes below

100 lines, 2. codes above 100 lines. Accuracy of the

proposed system is evaluated based upon two static code

analysis metrics; LOC (Lines of Code) and NOF (Number

of Function). Execution time calculation result shows that

the proposed system saves much time-cost and effort of

manual analysis to detect harmless logical bugs while

seeing but destructive in actual. The proposed system is

compared with Neelima‟s system (Syntax Bug Detection

in C language code) and accuracy level is almost the same

although it is harder to detect logical bugs rather than

syntax bugs.

This research work has enough room; the proposed

system can be integrated into some other bug tracking

tools that have been developed to detect the syntax and

real time bugs of the C++ code(s). The scope of this work

includes extension to other types of bugs such as Real

Time Errors, Memory Leak Errors and implementation

for other programming languages as well.

References

[1] Z. Li, “Using data mining techniques to improve software

reliability”, Avaialble:https://www.ideals.illinois.edu/ handle/

2142/11273, 2006.

[2] Y. Zhang, Y. Liu, L. Zhang and Y. Shi, “A data mining based

method: detecting software defects in source code”, 2nd Int. Conf.
on Software Engg. and Data Mining (SEDM), Chengdu, China, pp.

607-612, 2010.

0

10

20

30

40

50

60

70

80

90

100

C++ BUG CUB Neelima's System

A
cc

u
ra

cy
 (

%
)

C++ BUG CUB vs Neelma's

Bugs<=15 Bugs>15

https://www.ideals.illinois.edu/handle/2142/11273
https://www.ideals.illinois.edu/handle/2142/11273

A. Raana et al. / The Nucleus 53, No. 1 (2016) 56-63

 63

[3] H. Uwano, M. Nakamura, A. Monden and K. Matsumoto,

“Analyzing individual performance of source code review using
reviewers‟ eye movement”, Proc. of Symposium on Eye Tracking

Research & Applications ACM Digital Library,

pp. 133-140, Mar 27, 2006, ACM.

[4] “Common beginner C++ programming mistakes”, Available:http:

//fd.valenciacollege.edu/file/grhodes4/CommonBeginnerMistakes1
.pdf. [Accessed: 1-08, 2015].

[5] “Eight C++ programming mistakes the compiler won‟t catch”,
Available: http://www.learncpp.com/cpp-programming/eight-c-

programming-mistakes-the-compiler-wont-catch/. [Accessed: July

2nd 2007]

[6] “10 Common programming mistakes in C++”, Available:http://

alumni.cs.ucr.edu/~nxiao/cs10/errors.htm.

[7] R. Kartha and V. Nair, “Data mining for causal analysis of

software defects”, Master of Science Thesis, Technische
University Eindhoven, Int. J. Comp. Sci. Mobile Comput.

(ICMIC), pp. 1-7, December, 2013.

[8] P. J. Kaur and Pallavi, “Data mining techniques for software defect

prediction”, International Journal of Software and Web Sciences

(IJSWS 12-347), vol. 3, no. 1, Feb 2013, pp. 54-57.

[9] K. Shvachko, H. Kuang and S.Radia, “The hadoop Distributed file

system” Mass Storage Systems and Technologies (MSST), IEEE
26th Symposium on, 3-7 May 2010, pp. 1-10, Incline Village, NV.

Available:IEEE Xplore, http://www.ieee.org.

[10] J. Dean and S.Ghemawat, “MapReduce: simplified data processing

on large clusters”, Communications of the ACM, vol. 51, no. 1,

pp. 107-113, January 2008.

[11] W. Peng, J. Chen and H. Zhou, “An Implementation of ID3—

Decision Tree Learning Algorithm”, Available:
http://cis.k.hosei.ac.jp/~ rhuang/Miccl/AI-2/L10 src/Decision

Tree2. pdf 2009.

[12] H. D. Owens, B. E. Womack and M. J. Gonzalez, “software error

classification using purify”, International Conference on Software

Maintenance, CA, USA , Nov. 4-8 1996, pp. 104-113.

[13] S. J. Dommati, R. Agrawal, G.R.M. Reddy and S. Kamath, “Bug

classification: feature extraction and comparison of event model
using naïve bayes approach”, Int. Conf. on Recent Trends in

Comp. Inform. Engg (ICRTCIE), Pattaya, April 13-15, 2012.

[14] A. McCallum and K. Nigam. “A comparison of event models for

naive bayes text classication”, Available:http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=
pdf 1998.

[15] M. S. Naidu and N. Geethanjali, “Classification of defects in

software using decision tree algorithm”, Int. J. Engg. Sci. Tech.
(IJEST), vol. 5, no. 6, pp. 1332-1340, June 2013.

[16] B. Liu, Y. Ma and C.K. Wong, “Improving an association rule
based classifier”, Proc. of the Fourth European Conference on

Principles and Practice of Knowledge Discovery in Databases,

pp. 504-509, 2000.

[17] P. Wang, J. Yang, L. Tan, R. Kroeger and J. D. Morgenthaler,

“Generating precise dependencies for large software”, Managing
Technical Debt (MTD), 2013 4th International Workshop on,

IEEE, 20-20 May, pp. 47-50, 2013, San Francisco, CA. Available:

IEEE Xplore, http://www.ieee.org.

[18] C.A. Lattner, “LLVM: An infrastructure for multi-stage

optimization”, Graduate College of the University of Illinois at
Urbana-Champaign, 2002, pp.1-56.Avaialable: http://www.llvm.

org/pubs/2002-12-LattnerMSThesis-book.pdf.

[19] M. Johnson and J. Zelenski, “Lexical Analysis”, http://dragonbook.

stanford.edu/lecture-notes/Stanford-CS143/03-Lexical-Analysis.

pdf, June 25, 2008.

[20] MA Hearst, “Text data mining: Issues, techniques, and the

relationship to information access”, in journal Presentation notes
for UW/MS workshop on data mining, pp. 112-117, July 1997.

[21] V. Neelima, Annapurna. N, V. Alekhya and B. M. Vidyavathi,
“Bug detection through text data mining”, Int. J. Adv. Res.

Comput. Sci. Softw. Engg., vol. 3, no. 5, pp. 564-569, May 2013.

[22] KB Kumar, J. Gyani and G. Narsimha, “Sequential cyclomatic

complexity over a chain of function calls”, Int. Conf. on Networks

and Information, PCSIT, vol. 57, 2012, IACSIT Press, Singapore.

[23] P. Devi and R. Ranjan, “enhanced bug detection by data mining

techniques”, Int. J. Comput. Engg Res. (IJCER), vol. 4, no. 7, pp.
19-27, July 2014.

[24] D. Radosevic and T. Orehovacki, “An analysis of novice
compilation behavior using Verificator”, Proceedings of the ITI

2011 33rd, Int. Conf. on Information Technology Interfaces, June

27-30, 2011, Cavtat, Croatia. Available: IEEE Xplore,
http://www.ieee.org.

[25] S.H Abid, S. Zehra and H. Iftikhar, “using computer aided
software for teaching and self learning”, Proceedings of the ICL

2011 14th Int. Conf. on Interactive Collaborative Learning, 21-23

Sept. 2011, Piestany. Available: IEEE Xplore, http://
www.ieee.org.

[26] D. Lanvanya and K. U. Rani, “performance evaluation of decision
tree classifiers on medical datasets”, Int. J. Comp. Appl., vol. 26,

no. 4, July 2011.

http://fd.valenciacollege.edu/file/grhodes4/CommonBeginnerMistakes1.pdf
http://fd.valenciacollege.edu/file/grhodes4/CommonBeginnerMistakes1.pdf
http://fd.valenciacollege.edu/file/grhodes4/CommonBeginnerMistakes1.pdf
http://www.learncpp.com/cpp-programming/eight-c-programming-mistakes-the-compiler-wont-catch/
http://www.learncpp.com/cpp-programming/eight-c-programming-mistakes-the-compiler-wont-catch/
http://alumni.cs.ucr.edu/~nxiao/cs10/errors.htm
http://alumni.cs.ucr.edu/~nxiao/cs10/errors.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=pdf
http://www.llvm.org/pubs/2002-12-LattnerMSThesis-book.pdf
http://www.llvm.org/pubs/2002-12-LattnerMSThesis-book.pdf
http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/03-Lexical-Analysis.pdf
http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/03-Lexical-Analysis.pdf
http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/03-Lexical-Analysis.pdf

