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A B S T R A C T 

Planning and management are necessary tools throughout the world, especially in a mountainous regions where various natural hazards affect the area 

socially and economically. Landslides are one of the most common natural hazards in mountainous regions throughout the world. For this purpose, qualitative 

and quantitative methods and landslide susceptibility mapping were used to reduce the probability of landslide occurrence in an affected area and landslide 
mitigation. The study was focused on landslide susceptibility mapping in Neelum valley using a relative effect model integrated with 17 causative factors of 

landslides. These factors such as elevation, slope gradient, slope aspect, general curvature, geology, plan curvature, profile curvature, drainage density, 

stream power index, distance from stream, distance from road, topographic roughness index, Normalized difference wetness index, distance from fault, 
rainfall, landuse landcover, and Normalized difference vegetative index were used for analysis. Neelum valley is the part of the Himalayan region that is often 

experiencing landslide hazards frequently. Among other methods, it is a statistical method prepared within the Geographical information system environment 

to develop landslide hazard zones in Neelum valley. The landslide inventory map was shown the presence of past landslides in the study area by using Google 
Earth and remote sensing imageries. Total landslides were 368 in number, 30% (110) for testing purposes and 70% (258) for training purposes.  The validation 

of Relative effect model was calculated with the Area under the curve such as the success rate curve and the prediction rate curve. This was adopted to check 

the validation and optimum landslide susceptibility zone categorization. The success rate curve of the model was 82.15% calculated whereas 82.73% was the 
predictive rate curve. According to the study, landslide susceptibility mapping was classified into four classes with 18.14% of the area being very high zone, 

34.04% of the area being high zone, 30.26% area being moderately susceptible zone and 17.56% of the area being low susceptible to landslide occurrence 

zone. Hence, the results of this study highlight the spatial information of the area that may face landslide hazards and may be very helpful to planners, 
engineers, government agencies, stakeholders and other participants for the prevention, mitigation, management, and monitoring of landslide hazards and 

this model may also be applicable in other landslide areas. 
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1. Introduction 

Landslides are the type of natural destructive and 

geological calamities which are widely found in unequaled 

and steep terrain, having severe impacts on the economy 

and society [1, 2]. The rate of landslides is increasing with 

the contribution of other types of natural hazards such as 

rainfall, floods, snow, and earthquakes [3]. Unpredictable 

expansion and increasing population and urbanization of 

uneven topographic regions are the other anthropogenic 

factors to increase the landslides in developed and 

underdeveloped countries [4, 5]. Research and academic 

institutes and government agencies are working 

continuously on landslide occurrences to find out solutions 

for analyzing, predicting, and mitigating them [6]. 

Pakistan consists of the three largest northern mountain 

ranges named Himalaya, Karakoram, and Hindukush. The 

Himalayas is the most devastating and prone landslide 

range [7] having 30% of total landslides in the world [8]. 

It consists of rugged mountains, active tectonic activities, 

steep slopes, climatic conditions, deep weathering of strata, 

geology, and infrastructure on the unstable slope [2, 9, 10]. 

Seismic activities and monsoon rainfall are the primary 

triggering factors of landslides [4]. During the rainy 

season (monsoon season June to August), a massive 

amount of landslides are triggered due to the contribution of 

tectonic activities and geological properties in the 

Himalayasrange [10]. Approximately, more than 200 people 

and 1 billion US Dollars in economic losses take place due to 

landslide hazards every year [11].  

Neelum Valley is the largest district of Azad Kashmir 

and the part of the lesser Himalayan mountain where 

frequent landslides occur every year. The landslides are 

triggered due to various causative factors related to natural 

and human and trigger factors such as rainfall, tectonic 

movements, stream erosion, snowfall, and storm waves 

[12]. October 8, 2005, was a time when a very devastating 

hazard such as an earthquake with a 7.6 Mw magnitude 

triggered and approximately, 26,000 people died, directly 

and indirectly, millions of people lived without a home, 

and approximately, 5million US$ property was destroyed 

[13]. Every year landslides are affecting hundreds of 

people and approximately, one billion US$ of property is 

lost [14, 15]. The tendency of landslide occurrence has 

been listed from 1990 to 2005 and these trends will further 

increase in the future caused of human interference over 

the fracture and frail slopes [16]. Population growth takes 

place pressure on the fragile and weak slopes because of 

agriculture, infrastructure development, and habitation 

[10]. On the other side, the area of forest decreases, which 

produces more landslide risk [17, 18]. Seasonal and diurnal 

temperature and immature and young geology are other 

factors that help in the occurrence of landslides [18, 19]. 

Many scientific societies and communities have 

worked on landslide susceptibility in various regions of the 
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world [20, 21]. Landslide hazard mitigation and 

management studies are linked with landslide susceptibility 

mapping [10, 22]. The preparation of a Landslide 

susceptibility map is essential to understand the slope 

activities and their regulation components [4]. Landslide 

susceptibility mapping showed the target area into different 

zones according to the chance of landslide occurrence          

[23, 24]. Landslide inventory represents the extent of 

landslides, their types, and past and present landslide intensity 

in the target area [25, 26]. Landslide inventory, causative 

factors, and suitable methods have been used for the 

assessment of landslide susceptibility [27, 28]. 

Geospatial technology plays an effective role in 

landslide analysis. The use of geospatial techniques has 

been enhanced because of the statistical abilities, spatial 

information, and handling the large datasets [29, 30]. 

Various prediction methods such as qualitative, 

quantitative, direct, and indirect approaches have been 

utilized for assessing landslide susceptibility worldwide 

[31, 32]. The qualitative approaches such as heuristic and 

direct Geo-morphological mapping are based on personal 

knowledge and skills whereas the quantitative approaches 

are based on a numerical calculation between the landslides 

with their controlling factors [33, 34]. 

Hence, an effort has been made to create the landslide 

inventory map, select the suitable landslide causative 

factors and develop the landslide susceptibility map to 

show the landslide susceptibility areas by applying a GIS-

based Relative Effect model. Relative Effect model is a 

bivariate statistical and quantitative approach, which 

provided the relationship between the causative factor with 

landslide events in the study area. The predictability and 

accuracy of the model were carried out through the success 

and prediction rate curves in landslide susceptibility 

modeling. The result of the study provides help to the 

government, private, academic, and research institutes, 

planners, and decision-makers to emphasize proper 

mitigation scales. 

2. Material and Methods 

2.1 Investigation site  

Neelum Valley is the largest district and most beautiful 

place of Azad Kashmir having an attractive and 

resplendent spot for the tourist community (Fig. 1). It is 

located at longitude 73-75N and latitude 32-36E degree 

and situated toward the 20Km Northeast of Muzaffarabad 

city. Approximately, 3737Km2 area is covered by lesser 

Himalayas with around 1.96 million population [35]. 

Himalaya George is called the area of Neelum Valley due 

to its rugged topography having lush green mountains, 

valleys, waterfalls, small terraces, and freshwater streams. 

The elevation of Neelum valley is between 980 meters and 

6128 meters above sea level [36]. Sub-humid is the climate 

of Neelum Valley. Annual precipitation in Neelum Valley 

is 1650 mm [37]. 

 

Fig.1: Study map of Neelum Valley. 

2.2 Methodology 

A database of various types of causative factors is 

developed which consists of topographic, hydrologic, and 

other related information derived from the sentinel 2 satellite 

images, geological maps, and digital elevation model (DEM) 

which determined the effect of landslides causative factors on 

landslide spatial arrangement (table 1). In the GIS 

environment, ArcGIS software was utilized for the 

preparation of landslide inventory and thematic maps of 

causative factors. The methodology of landslide susceptibility 

assessment is divided into three sections. 

Table 1: Data used for landslide susceptibility model. 

Factor maps Data Acquisition  Scale/ 

Resolution 

Methods 

Landslide 
inventory 

Field data and 
satellite images 

1:50,000 Polygons and 
points 

Lithology Geological map 1:50,000 Polygons 

Slope 
Gradient 

ALOSPALSAR 
DEM 

12.5m Natural Break 

Slope Aspect ALOSPALSARDEM 12.5m Natural Break 

Elevation  ALOSPALSAR 

DEM 

12.5m Natural Break 

General 
Curvature 

ALOSPALSAR 
DEM 

12.5m Natural Break 

Profile 
Curvature 

ALOSPALSAR 
DEM 

12.5m Natural Break 
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Plan 
Curvature 

ALOSPALSAR 
DEM 

12.5m Natural Break 

TRI ALOSPALSARDEM 12.5m Natural Break 

SPI ALOSPALSAR 
DEM  

12.5m Natural Break 

Distance 

from stream 

ALOSPALSAR 

DEM 

12.5m 200m interval 

Drainage 
density  

ALOSPALSAR 
DEM 

12.5m  Natural Break 

Distance 
from road 

Topographic map 1:50,000 200m interval 

NDVI Sentinel 2 10 m Natural Break 

NDWI Sentinel 2 10 m Natural Break 

Distance 

from faults 

Geological maps 1:50000 200m interval 

Land-use 
Land-cover 

Sentinel 2 10m classification 

Rainfall 
(mm) 

GPM 10m Natural Break 

2.3 Landslide inventory  

First step was to prepare the past landslide inventory map. 

For this purpose, the landslide sites were collected through 

Google Earth and GPS in a detailed field investigation. 

Integrated the field information with the Sentinel satellite 

images at a spatial resolution of 10m is utilized for mapping 

and accuracy of landslides. Fig. 2 shows the diagnostic shapes 

of different types which define landslide classification using 

Varnes classification [38]. A total of 368 landslides have been 

identified. The digitized landslides were rasterized with the 

12.5×12.5 m spatial resolution. This rasterized landslide 

inventory was used to calculate the number of grids in 

different classes of each causative factor for computing the 

ratio of landslide frequency. The landslide inventory database 

is randomly divided into subsets of 70% for training and 30% 

for testing. 

 

Fig. 2: Spatial distribution of various types of landslides in the study area. 

2.4 Causative factors 

After developing the landslide inventory map, Neelum 

Valley with 17 causative factors such as geology, distance 

from road, distance from stream, distance from fault, slope 

gradient, elevation, slope aspect, slope general curvature, 

profile curvature, stream power index, plan curvature, 

drainage density, terrain roughness index, NDVI, NDWI, 

LULC, and rainfall were selected for the landslide 

susceptibility assessment and mapping. 

2.5 Geological map 

Geology is an important factor and has a close relation 

with landslides [39]. The lithology and tectonic setting have a 

great impact on slope stability. It also affects the permeability 

and strength of soil and rocks. In Neelum Valley, landslides 

and surface geology have strong relations with each other. 

The surface geology of Neelum valley is mapped from the 

Geological map of Northern Pakistan which is acquired from 

the National Center of Excellence in Geology, University of 

Peshawar prepared by M.P. Searle and M. Asif Khan in 1996 

(Fig. 3a) which contains such formations that is Murree 

formation (Nasueri group), Surgun group, Kundal Shahi 

group (Saikhala Series), and Nani group. These formations 

were different complex types of rocks (table 3). 

2.6 Topographic parameters 

ALOSPALSAR DEM having a 12.5-meter resolution was 

utilized to extract the topographic and hydrologic parameters. 

Topographical parameters extracted from DEM were slope 

gradient, slope aspect, elevation, general curvature, profile 

curvature, plan curvature, and terrain roughness index.  

Slope gradient is the change of slope angle from general 

to steepest where the flow of water and movement of other 

materials moves toward slope direction. It plays also a vital 

role in the geomorphology and hydrology of the area. Rate of 

change of slope gradient describes the speed of surface and 

surface flows [40-42]. Therefore, frequency of landslide 

occurrence depends on the slope gradient. The slope map of 

Neelum Valley has been extracted from the ALOSPALSAR 

DEM having a 12.5-meter resolution, as shown in Fig. 3b. The 

slope map is classified into 0-18, 18-28, 28-38, 38-48, and 48-

83 (table 3). 

Dimension of the slope is described through the slope 

aspect. It has a great effect on landslide occurrences and has 

been utilized for landslide susceptibility mapping [34]. 

According to previous studies, the slope aspect has an indirect 

impact on landslide occurrences. Duration and sunlight 

intensity, rainfall, and soil moisture are the factors where the 

slope aspect depends on them. These factors have a great 

relation with landslides and vegetation cover [43]. The slope 

aspect factor has been extracted from ALOSPALSAR DEM 

as shown in Fig. 3c. There are nine dimensions such as flat, 

north, northeast, east, southeast, south, southwest, west, and 

northwest, and has been displayed in Fig. 3c, and Table 3. 

Elevation is the topographic factor and has a significant 

role due to landslides taking place from up to downward 

direction [44]. It affects different geological and 

geomorphological conditions. Elevation differentiates 

maximum and minimum points within landscape [45]. 

ALOSPALSAR DEM with 12.5m resolution has been used to 
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extract the elevation factor as shown in Fig. 3d. Landslides 

occur due to the variation in elevation among the crown and 

toe caused by gravity which affects the whole system of 

terrain. 

Curvature describes the morphology of topography with 

respect to changes in slope angle [46, 47]. It is also an 

important factor in landslide events where flow direction 

depends on the curvature of the landscape [24, 48]. Curvature 

was found in three sub-regions such as concave, convex, and 

flat. Concave area is positive values, convex consists of 

negative, and flat has zero value due to its nature. DEM was 

utilized to extract general curvature and classified it into five 

classes in this study as shown in Fig. 3e. 

Profile curvature defines the vertical plan where it finds 

out the impact of topographical morphology on flow 

circulation. Profile curvature works on the changing angle of 

slope on flow path [49]. Profile curvature worked as opposed 

to plan curvature factor. It is divided into sub-regions such as 

concave, convex, and flat according to hill slope. 

ALOSPALSAR DEM was used to generate the profile 

curvature in the GIS environment as shown in Fig. 3f. 

Plan curvature defines as the horizontal plane where it 

find-out the impact of topographical morphology on flow 

circulation. Plan curvature works on the convergence and 

divergence of water during that time when erosion takes place 

through flow of water on the surface [50-52]. Plan curvature 

was extracted from DEM as shown in Fig. 3g.  

Terrain roughness index calculates the difference between 

the maximum and minimum height points in a total area [53]. 

It is an important morphometric causative factor that regulates 

slope stability. It shows the movements of the slope and plays 

an indirect role in landslide occurrence. TRI is calculated by 

using the following equation: 

 Terrain Roughness Index = √|x|(max2 − min2)    (1) 

Whereas the max and min show the maximum and 

minimum values [54]. Terrain Roughness index was 

generated from ALOSPALSAR DEM as shown in Fig. 3n. It 

was categorized into five classes (table 3). 

2.7 Hydrological parameters 

Hydrological parameter is drainage density, stream power 

index, and rainfall. 

Drainage density is a hydrological parameter. This 

parameter is calculated through the total length of stream or 

river divided by total area of the drainage basin. This 

parameter shows the runoff water from the channels. 

However, drainage density is the quantitative value. Higher 

value represents an increase in the runoff ratio of water. 

Higher drainage density value shows high possibility of 

landslide occurrence. The equation of drainage density is 

given below: 

            DrainageDensity =
Lk

Ak
     (2) 

Whereas DD is drainage density, Lk is the total length of 

stream or river and Ak represents the total area of the drainage 

basin. The drainage density map of Neelum Valley was 

prepared from ALOSPALSAR DEM as shown in Fig.3j.  

Stream power index is calculated as the erosion property 

of the stream in the flow accumulation area [55]. It describes 

the erosion power of the stream with the slope [56]. The 

higher value of stream power index shows the high probability 

of landslides due to the high possibility of erosion power. 

Stream power index is calculated by: 

     Stream Power Index = A tan β/b    (3) 

Whereas A represents the accumulated area and b is a 

slope (degree). ALOSPALSAR DEM was used to prepare the 

SPI map as shown in Fig. 3m. The SPI map was classified into 

five classes such as very low, low, moderate, high, and very 

high. The positive values of Relative Effect of each class of 

steam power index indicated high ratio of landslide found 

where negative values have no probability of landslide events. 

2.8 Rainfall map 

Rainfall is a very prominent and triggering factor in 

landslide occurrences [57]. Majority of landslides occurred 

due to the rainfall-triggering factor. Occurrence of landslides 

depends on the amount of rainfall as well as duration of 

rainfall so it can be said that landslides occurrence is directly 

proportional to the amount and duration of rainfall [58, 59]. It 

reduces the cohesion power of soil under saturation conditions 

[60]. Long-term duration of rainfall causes landslides in the 

study area. It produces surface runoff as well as discharge of 

unconsolidated ground material. Global precipitation 

measurement mission (GPM) data was utilized for the rainfall 

data of the study area. This rainfall data was used to prepare 

the rainfall map by using the IDW interpolation technique in 

GIS (Fig. 3q). The rainfall values were categorized into five 

classes (table 3). 

2.9 Environmental factors 

Environmental factors include NDVI, NDWI, and LULC  

NDVI and NDWI 

Satellite images such as Sentinel Images with 10-meter 

resolution were downloaded from the Sentinel Website. 

Sentinel Images were used to extract the NDVI and NDWI. 

Normalized difference vegetation index is a significant role in 

landslide occurrence and landslide susceptibility mapping 

[61]. The purpose of NDVI is to calculate the density of 

vegetation in form of forest, agriculture, range, cropland, etc., 

on the land surface [62-65]. The presence of dense vegetation 

decreases the landslide occurrence but absence of vegetation 

increases the rate of landslide events due to less cohesion 

power in soil. The NDVI is the difference between the red 

band and Infrared band of satellite images. The equation of 

NDVI is given below: 

      NDVI =
NIR−RED

NIR+RED
     (4) 
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Where NIR is the near-infrared band and RED represents 

the red band of satellite image. The range of NDVI is 

between -1 to +1. The +1 value represents highly 

concentrated and dense vegetation and -1 represents a low 

concentration of vegetation. Satellite image such as Sentinel 

2 was used to prepare the NDVI image of the study area as 

shown in Fig. 3k. The NDVI map was classified into five 

classes.  

McFeeters developed the Normalized difference water 

index in 1996 to determine the water body associated with 

wetlands [66]. The equation used for NDWI is given below: 

        NDWI =
BAND GREEN−BAND NIR

BAND GREEN + BAND NIR
    (5) 

The result of NDWI shows that the value greater than zero 

represents the water surface area and the value equal to or less 

than zero represents non-water surface area. This index is 

based on remote sensing satellite base image phenomenon. 

Sentinel 2 satellite image was used to prepare the index map 

of the study area as shown in Fig. 3l. 

Landuse landcover map 

Landuse is also a key factor in the modification of landuse 

patterns and consolidated slope material through human 

intervention and changes in the environment [67]. It also 

affects the hydrology of the area as well as the mechanical 

properties of the soil. Landuse factor is considered 

responsible for the evaluation of landslide susceptibility [68]. 

In hilly areas, road networks with infrastructure, etc., lead to 

a loss of the stability of slopes due to overburden and 

undercutting. Deforestation occurs due to the expansion of 

towns and villages which reduces the cohesion power 

provided by roots. 

Generally, low land cover includes non-vegetated areas 

and bare land is more suspected that cause landslides prone 

[21]. A high land cover includes densely vegetated areas that 

strengthen the ground because dense vegetation is preventing 

erosion. Cultivation causes the incidences of landslides due to 

saturation of soil and removal of the surface soil layer. 

Sentinel 2 LULC image having 10m spatial resolution was 

downloaded from the ArcGIS website [69]. This image is 

prepared using maximum likelihood based on supervised 

classification. This image was used to clip the landuse 

landcover area of the study area. LULC map has eight LULC 

units of bare land, build area, clouds, crops, Rangeland, 

snow/ice, trees, and water (Fig. 3o) and the area of each unit 

was shown in table 3. 

2.10  Proximity factors 

Distance from Road, stream, and fault 

Generally, Linear features including roads and streams 

decrease resisting force which leads to instability of slope and 

reduces the factor of safety [70, 71]. Faults are the breaks 

found in the tectonic features which decrease the strength of 

the slope. Thereby, distance from road, steam, and fault is 

linked with the possibility of landslides. River and road were 

digitized from topographic sheets of the study area. Faults 

map was prepared from the fault map of Neelum valley [72].   

 Distance from stream, road, and fault is calculated by 

using the multiple buffer tool in ArcGIS software. The 

distance from the road, stream, and fault also has a great effect 

on the landslide occurrence. This effect was examined by 

utilizing the Relative effect model for the assessment of 

landslide susceptibility.  This tool created the five buffer 

zones with 200-meter intervals on the map as shown in Fig. 

3(h, i, p). These distances were 0-200, 200-400, 400-600, 600-

800, and > 800 meters. 
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Fig. 3: Thematic maps of the study area: (a) geology; (b) slope gradient; (c) 

slope aspect; (d) elevation; (e) general curvature; (f) profile 

curvature; (g) plan curvature; (h) distance to road; (i) distance from 
river; (j) drainage density; (k) NDWI; (l) NDVI; (m) stream power 

index; (n) TRI (o) Landuse Landcover; (p) distance from faults; (q) 

rainfall. 

2.11 Description of methods 

Relative Effect model has been applied for landslide 

susceptibility mapping in a GIS environment to achieve the 

objectives of the study. Next step was to find out the relative 

effect values of each causative factor by introducing the relative 

effect function. Relative effect function has been used to create 

the correlation between the landslide causative factors and past 

landslide events. In Relative Effect model, for each class of 

each causative factor, the relative effect function [73, 74] was 

computed by using the following equation. 

      RE = Log (
SR

AR
+ ϵ)    (6) 

Whereas, 

              SR =
sld

SLD
     (7) 

              AR =
a

A
     (8) 

Whereas RE is the Relative Effect, sld consists of a total 

number of landslide pixels in an individual class. SLD is the 

total number of landslide pixels in the target area. A is the total 

number of pixels in the target area and a contains the total 

number of pixels in an individual class. ɛ is a very small positive 

l 

m 

n 

o 

p 

q 
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value near zero. Relative Effect values of each class of 17 

causative factors were calculated as shown in table 3. 

2.12 Landslide susceptibility maps and validation 

This logarithmic model gives the analysis of positive and 

negative quantitative effects. All the causative factors maps 

were integrated into the GIS environment to determine the 

landslide susceptibility index map. As a result, landslide 

susceptibility zones were developed on the bases of the 

Landslide susceptibility index. This algebraic summation 

equation is given as; 

         LSI = ∑ RE     (9) 

In this study, four landslide susceptibility zones have been 

developed from low to very high classes in Neelum Valley. The 

Relative Effect model base on the scale consists of positive and 

negative values. There are three cases found in the present 

relationship analysis [73, 74]. 

 Effect of Negative values: when the value of Relative Effect 

scale is less than zero, the effect of probability of landslide 

susceptibility would be decreased.  

 Effect of Positive values: if the value of Relative Effect 

scale is greater than zero, the chances of a landslide would show 

high. 

 Effect of Zero value: the zero value of Relative Effect 

would show no effect on landslide susceptibility. 

 These values for each class of causative factor determined 

the relationship between the landslide sites and each class of 

causative factor map. 

 In third section, prediction and success curve rate were used 

to find out the validation and performance of relative effect 

model. 

3. Result and Discussion. 

Relative Effect model has been utilized in different areas of 

the world for landslide hazard mapping. In this article, the 

landslide susceptibility zone map of Neelum valley has been 

prepared by using Relative effect model which shows 

landslide-prone areas. These prone areas indicated the 

relationship between the causative factors and spatial 

distribution of past landslide inventory. 

3.1 Landslide inventory of Neelum Valley 

A Landslide inventory map shows the distribution of 

landslides in the Neelum valley separately. A Landslide 

inventory map is a primary step for the prediction of landslide 

susceptibility zonation but it is very difficult to take and map 

every landslide point because of time and tools availability. A 

total of 368 landslide sites were delimited, interpreted, and 

digitized on Sentinel-2 images. Field survey was conducted due 

to remove the uncertainty in the landslide inventory data and 

ground truth. Fig. 4 shows the different locations of landslides 

at different points. These landslides were classified into major 

types such as slides, debris flow, and rockfall according to 

Verne's classification. Among the landslides, 66.22% of 

landslides are slides, debris flows are the second occurring 

phenomena which have 33.70%. Rockfall is found in the least 

amount and has 1.08% of landslides. During the field survey, 

majority of the landslide were recorded near the road and rivers. 

The smallest landslide is identified with an area of 0.0001km2 

while largest landslide covered an area of 0.3236Km2. A total 

number of 368 landslides, slides were 240 in number and 

covers 3.4717 Km2 of the total landslide area. 124 landslides are 

the debris flow having 3.77km2 of total landslide area while 

rockfall contains 4 landslides and covers 0.05Km2 landslide 

area (table 2). 

Table 2: Mapped landslide types, min/max area of landslides in the study 

area. 

Landslides in Neelum Valley 

LS Types LS LS (%) 

Min 
Area  

(Km2) 

Max Area 

 (Km2) 
Average  

Slide 240 65.22 0.0002 0.33 3.48 

Debris 
Flow 

124 33.70 0.0010 0.22 3.76 

Rock Slide 4 1.08 0.0032 0.02 0.05 

Total 368 100    

 

Fig. 4: Landslide inventory map of Neelum Valley. 

3.2 Relationship between landslides occurrences and 

causative factors 

Geology 

 The relation of landslide with the Lithological units 

through RE model shows that Tanawal formation, Manshera 

granite, Proterozoic (Kundalshahi group), and Paleozoic 

(Surguen Group-C) are high and positive relative effect 

values which represent high concentration of landslide 

occurrence. They have the RE value of 0.55, 0.25, 0.24, and 

0.11 respectively (Fig. 5a, table 3). These classes of geology 

factor describe the weak structure and fragile types of rocks. 

The precipitation in uncovered forestation areas, 

deforestation, weak roots of trees, weathering, and frost 

action were also involved to increase weakness of geology 

of the study area. The lowest values -0.84 and -0.02 are 

calculated for the Surgun Group-B and Besal eclogites. 
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Slope gradient 

 The result showed that the rate of landslide occurrence 

increases where slope angle is above 38 degrees (Fig. 5b, table 

3). In the slope gradient, positive RE values of 0.06 and 0.05 

are calculated for 38-48 to 48-84 classes respectively. Fig. 5b 

represented a strong relationship between landslides and slope 

gradient with increasing the slope gradient of the entire area. 

This slope gradient shows the direct relation with the slope of 

the area and if weak and immature geology is found then the 

landslide ratio increases due to slope. 

 Slope aspect  

 It is observed that northwest to northeast and southward 

aspect shows high intensity of sunlight and precipitation which 

determined the high frequency of landslide events (table 3 and 

Fig. 5c). The lowest relative values were observed for east to 

southeast and southwest to west. North class has a high value 

of 0.31 RE thus highly susceptibility to landslide occurrences. 

Elevation 

 The elevation from 980–2219 class shows a high value of 

Relative effect indicating the positive correlation between 

landslides and causative factors. The negative and lowest value 

of class (3493-4075) shows no landslide effect because the 

negative value gives no landslide effect and is less susceptible 

to landslide occurrences in the area. The result revealed that the 

rate of landslide events raised due to increasing the elevation as 

shown in Fig. 5d and table 2.  

General curvature  

 Curvature is composed of flat, concave, and convex. The 

result of each class is shown in table 3 and Fig. 5e, that the 

concave region identified the high relative effect values in first 

and second class are 0.25 and 0.11, respectively. These values 

reflected the high ratio of landslide occurrence and show a 

strong relationship between the causative factors and 

landslides. A negative correlation was observed for flat and 

convex classes. 

Profile curvature  

 Concave, convex, and flat are the classes of profile 

curvature. Profile curvature works opposite to general and 

plane curvature. A relative effect model was used to find out 

the effect of landslide events on profile curvature. The result 

showed that fifth class showed a high relative value (0.24). Fifth 

class identified the concave region which represented the 

highly susceptible and concentrated to landslide occurrence. 

The overall result is shown in Fig. 5f and table 3. 

Plan curvature 

 Plan curvature has three sub-areas such as concave 

(positive), convex (negative), and flat (zero values). In this 

study, it is classified into five classes. The overall results 

revealed that concave region has a high value in relative effect 

model with the value of 0.23 and 0.15. a positive correlation 

was observed in concave class shows high susceptible to 

landslides (Fig. 5g and table 3). 

Distance from the Road 

 The result shows that possibility of landslides decreases to 

move away from the roads as shown in buffers from 0 to 800 

m. The positive values of distance from road are 0.58, 0.51, 

0.43, and 0.33RE. They represent the high risk and susceptible 

to landslides and decrease the effect as move away (Fig. 5h and 

table 3). Expansion of roads, vibration due to high traffic 

volume, and removal of the material from the toe of mountains 

are the factors. These factors increase the rate of landslides and 

decrease due to decrease the effect of these factors. 

Distance from the stream 

 The analysis revealed that distance from 0 to 800m shows a 

strong and positive correlation between the landslide and 

distance from the stream and the highest landslide possibilities. 

The results show that the highest value of Relative effect is to 

find out near the stream and decrease the values when 

increasing the distance from the steam which shows the 

landslide area is decreasing with increasing distance from the 

steam (Fig. 5i and table 3). The lowest RE value of -0.15 for the 

class of >800m distance from the stream. 

Distance from faults  

 It is evident from table 2 and Fig. 4, that highest RE values 

0.12 and 0.01 were calculated from the distance to fault class of 

200-400 and >800m. The observed values are positive, 

representing the strong correlation of landslides with distance 

from fault and high probability of slope failure (Fig. 5p and 

table 3). 

Drainage density  

 The drainage density classes of 0.34-0.68, 0.68-1.02, and 

1.02-1.36 are indicating high RE values of 0.30, 0.34, and 0.04 

respectively, and show a positive and strong correlation 

between landslides and drainage density.  The lowest and 

negative RE value of -0.18 and -0.38 was calculated for class 

0-0.34 and 1.36-1.7 and thus had less influence on landslide 

occurrence and landslide tendency (Fig. 5j and table 3). 

Normalized Difference Vegetation Index  

It is observed that the concentration of landslide occurrence is 

high in class 0.10–0.27 with a value of 0.42 due to less 

concentration of vegetation or deforestation which indicates 

positive and strong correlation between the landslides and 

NDVI whereas 0.42-0.56 class with the value of high 

concentration of vegetation indicates less rate of landslide 

occurrence and thus less prone to landslides (Fig. 5k and table 

3). 

NDWI  

 According to this index, the highest positive Relative Effect 

value of 0.38 and 0.01 is observed for -0.34 - -0.179 and                

-0.48- -0.34 classes respectively. They indicated a high rate of 

landslide tendency which represented a strong correlation 

between landslides and NDWI and highly prone to landslides. 

The lowest and negative values of -0.58, -0.09, and -0.31 

indicate a weak relationship between NDWI and landslides and 

have a low rate of landslide tendency (Fig. 5l and table 3). 
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Stream power index  

 In the stream power index, the third and fourth classes show 

positive relative effect values as compared to the other classes 

which revealed a high probability of landslide occurrence as 

shown in Fig. 5m and table 3. 

Terrain Roughness index 

 The results showed that the positive value of 0.33 and 0.77RE 

is calculated for 0.08–0.38 and 0.38-0.45 classes respectively. 

These high relative effect values indicated high ratio of landslide 

occurrence in the study area and showed strong and positive 

relation between landslides and TRI as compared to other classes 

(Fig. 5n and table 3). 

Landuse landcover  

 In case of landuse landcover, mostly all the classes have 

positive values and indicate strong correlation between 

landslides and landuse landcover. The highest positive values of 

0.82 and 0.65 are observed for crops followed by water. The 

snow/ice class is observed negative value of -1.38 indicating less 

susceptible to landslides (Fig. 5o and table 3). 

Rainfall  

 Rainfall is responsible for the majority of landslides and is 

directly proportional to the amount of rainfall.  The calculated 

values for rainfall classes 95.94-108.68 and 108.69-124.92 are 

highest with positive values of 0.09 and 0.44. The results show 

that the probability of a landslide is increasing as the rainfall 

increases and is highly prone to landslides. While the lowest and 

negative values of other classes show less susceptible to 

landslides and a weak correlation between them (Fig. 5q and 

table 3). 

Table 3: Neelum valley, relative effect values of the landslide conditioning 

parameters. 

CAUSATIVE 
FACTOR 

CLASS % OF 
PIXELS 
IN 
CLASS 

% OF 
LANDS
LIDE 
PIXELS 
IN 
CLASS 

RE 

GEOLOGY Glacier 4.08  0 0 
 shengus gensis 5.87  0 0 
 Besal eclogites 35.92  34.53  -0.02 
 Manshera granites 11.39  20.29  0.25 
 Proterozoic (Kundalshahi 

group) 
18.34  31.69  0.24 

 Mesozoic (Surguen group-B) 19.24  2.81  -0.84 
 Paleozoic (Surguen group-C) 3.38  4.35  0.11 
 Cambrian(Tanawal formation-

Surguen A) 
1.78  6.34  0.55 

SLOPE 
GRADIENT 

0 - 17 12.32  8.26  -0.17 

 17 - 28 24.81  22.60  -0.04 
 28 - 38 31.21  33.09  0.03 
 38 - 48 22.78  25.99  0.06 
 48 - 84 8.89  10.05  0.05 
SLOPE ASPECT North 9.93 14.19 0.31 
 Northeast 10.61  11.77  0.05 
 East 12.40  10.96  -0.05 
 Southeast 15.46  15.21  -0.01 
 South 14.87  15.97  0.03 
 Southwest 14.71  13.52  -0.04 
 West 11.94  7.63  -0.19 
 Northwest 10.07  10.74  0.03 
DISTANCE 
FROM ROAD 

0 - 200 2.30  8.71  0.58 

 200 - 400 2.17  7.00  0.51 
 400 - 600 2.08  5.64  0.43 
 600 - 800 2.03  4.33  0.33 

 >800 91.43  74.32  -0.09 
DISTANCE 
FROM 
STREAM 

0 - 200 3.72  16.81  0.65 

 200 - 400 3.63  8.13  0.35 
 400 - 600 3.53  7.77  0.34 
 600 - 800 3.51  7.36  0.32 
 >800 85.61  59.93  -0.15 
GENERAL 
CURVATURE 

-54.64 - -4.48 3.04  5.35  0.25 

 -4.48 - -1.28 25.87  33.17  0.11 
 -1.28 - 0.65 42.65  37.70  -0.05 
 0.65 - 3.85 25.26  20.62  -0.09 
 3.85 - 106 3.19  3.16  -0.00 
ELEVATION 980 - 2219 10.65  31.06  0.46 
 2219 - 2881 20.46  51.23  0.40 
 2881 - 3493 22.92  17.18  -0.13 
 3493 - 4075 26.22  0.53  -1.70 
 4075 - 6128 19.75  0.00  0 
PLAN 
CURVATURE 

-38.90 - -2.83 1.69  2.90  0.23 

 -2.83 - -1.04 13.20  18.83  0.15 
 -1.04 - 0.03 38.27  37.85  0.00 
 0.03 - 1.45 38.17  32.74  -0.07 
 1.45 - 52.18 8.66  7.69  -0.05 
PROFILE 
CURVATURE 

-57.98 - -3.34 1.75  1.98  0.05 

 -3.34 - -1.07 14.09  13.11  -0.03 
 -1.07 - 0.43 49.16  42.11  -0.07 
 0.43 - 2.7 32.04  37.59  0.07 
 2.7 - 38.12 2.96  5.22  0.25 
TERRAIN 
ROUGHNESS 
INDEX 

0.08 - 0.38 6.48  13.94  0.33 

 0.38 - 0.45 20.80  24.46  0.07 
 0.45 - 0.51 36.91  33.10  -0.05 
 0.51 - 0.59 27.07  22.72  -0.08 
 0.59 - 0.90 8.74  5.77  -0.18 
NDVI -1 - 0.10 17.93  8.58  -0.32 
 0.10 - 0.27 12.20  31.79  0.42 
 0.27 - 0.42 18.72  29.60  0.20 
 0.42 - 0.56 27.47  20.54  -0.13 
 0.56 - 0.87 23.69  9.50  -0.40 
NDWI -0.78 - -0.48 27.28  7.12  -0.58 
 -0.48 - -0.34 32.81  33.89  0.01 
 -0.34 - -0.17 17.21  41.50  0.38 
 -0.17 - .0.02 20.25  16.29  -0.09 
 0.02 - 1 2.44  1.20  -0.31 
DRAINAGE 
DENSITY 

0 - 0.34 72.59  48.21  -0.18 

 0.34 - 0.68 13.03  26.11  0.30 
 0.68 - 1.02 9.54  20.75  0.34 
 1.02 - 1.36 4.38  4.74  0.04 
 1.36 - 1.7 0.46  0.20  -0.38 
STREAM 
POWER 
INDEX 

0 - 162747343 99.97  99.96  -0.0005 

 162747343 - 623864818 0.02  0.01  -0-
00001 

 623864818 - 1329103309 0.01  0.01  0-0001 
 1329103309 - 2875203075 0.00  0.02  0-

0000001 
 2875203075 - 6916762112 0.00  0.00  0 
LANDUSE 
LANDCOVER 

Bare Land 8.90 10.83 0.08 

 Built Area 0.23 0.32 0.14 
 Clouds 0.00 0 0 
 Crops 0.16 1.06 0.82 
 Rangeland 45.35 49.54 0.04 
 Snow/Ice 15.62 0.66 -1.38 
 Trees 29.02 34.45 0.07 
 Water 0.70 3.10 0.65 
DISTANCE 
FROM FAULTS 

0 - 200 2.01 0.51 -0.59 

 200 - 400 2.01 2.62 0.12 
 400 - 600 1.99 1.32 -0.18 
 600 - 800 1.94 0.83 -0.37 
 >800 92.04 94.69 0.01 
RAINFALL 61.19 - 71.43 41.30 29.62 -0.14 
 71.44 - 82.43 20.25 15.29 -0.12 
 82.44 - 95.93 13.88 3.98 -0.54 
 95.94 - 108.68 11.08 13.69 0.09 
 108.69 - 124.92 13.46 37.40 0.44 
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Fig. 5: Thematic maps of the study area: (a) geology; (b) slope gradient; (c) 

slope aspect; (d) elevation; (e) general curvature; (f) profile 
curvature; (g) plan curvature; (h) distance to road; (i) distance from 

river; (j) drainage density; (k) NDWI; (l) NDVI; (m) stream power 

index; (n) TRI (o) Landuse Landcover; (p) distance from faults; (q) 
rainfall 

3.3 Landslide susceptibility zonation (LSZ) 

In the GIS environment, 17 landslide causative factors 

were integrated with their relative effect values (table 2) to 

develop the landslide susceptibility index map of Neelum 

Valley (Equation. 9). The range of susceptibility was (-6.68 – 

4.88) in the landslide susceptibility index map. Higher 

susceptibility values indicated a high rate of concentration of 

landslide occurrence in future. Landslide susceptibility index 

map was classified into four susceptibility classes by using the 

natural break method to prepare the landslide susceptibility 

map and to identify the level of prone areas based on the 

selected factors. These four classes are low, moderate, high 

and very high (Fig. 6). 15.50 % of the area was analyzed as 

the very high susceptibility zone and 33.75% was considered 

in the high zone of landslide susceptibility. The moderate 

landslide susceptibility class is 30.26% and low landslide 

susceptibility class is 17.56% of the entire area. The results 

showed that a total of 48.80% of the area was considered 

into very high and high susceptibility zones which make 

happen enormous damage in future (Fig. 6 and table 3). 

River and roadsides of the valley, infrastructure, and 

agriculture on fragile slopes are considered into very high 

landslide susceptibility zone. Fig. 7 further describes that the  

Fig. 6 Landslide susceptibility zones map Neelum Valley. 

low susceptibility class has low landslides. The percentage 

of landslide area in moderate and very high susceptibility 

classes is comparatively more whereas, high susceptibility 

class is a high percentage of landslide area as compared to 

the other three classes. 

Fig. 7: Landslide Susceptibility zones of Neelum Valley. 

Table 3: Landslide susceptibility zone of Neelum Valley. 

3.4 Validation and model performance 

Relative Effect model has been used by generating the 

landslide susceptibility zone of Neelum Valley. The success 

and prediction rate curves were used to measure the 

accuracy of Relative Effect model for selected causative 

factors. The success rate curve was obtained by comparing 

the training data set (70%) of landslide inventory with the 

landslide susceptibility map. The prediction rate curve was 

plotted between the testing data set (30%) of landslide 

inventory which is used as validation data, with landslide 

susceptibility maps. These curves were calculated by 

dividing the landslide susceptibility index values into 100 

classes and then combined with the past landslide inventory 

map. The resultant map indicated that existing landslide 

areas were falling in every susceptibility class. The success 

and prediction rate curves were built by mapping the 

landslide susceptibility index on the x-axis and cumulative 

percentage of landslide occurrence on the y-axis (Fig. 8). 

Both rate curves show the meaningful output of Relative 

Effect model and productive output of landslide 

susceptibility zone map. The traditional academic point 

system is used to classify the AUC into the following ranks 

for accuracy of models [75, 76] i.e. excellent (90-100%), 

good (80–90%), fair (70–80%), poor (60–70), and fail (50–

60%). The qualitative analysis of the AUC of success and 

predictive rate curve of landslide susceptibility index map 

was 82.15% and 82.73% accuracy. AUC rate curves were 

found in the good category. Hence, it was found from the 

analysis that the Relative Effect model gives satisfactory 

results in Neelum Valley.

Classes Low Moderate High Very High 

Percentage 17.56 30.26 34.04 18.14 



S.M. Khan et al. / The Nucleus 59, No. 3-4 (2022) 68-84 

 81 

 
Fig. 8: Success rate and predictive rate of the landslide susceptibility map. 

3.5 Discussion 

Every year, many human deaths and damage to their 

properties occur due to tremendous landslides. Therefore, a 

piece of comprehensive knowledge is required to understand 

and handle this phenomenon. Identifying past and new 

landslides that occurred in regions is essential to avoid future 

landslides. Various methods and approaches may be used to 

predict the landslide susceptible areas geographically. 

Relative effect model was used in this study to generate a 

landslide susceptibility map and to evaluate the relationship 

between the landslides and causative factors. In this study, a 

detailed landslide inventory map was prepared which is 

classified into three types of landslides included slide, debris 

flow, and rockfall. These types of landslides were examined 

during the field survey. 240 slide types of landslides were 

calculated having 65.22% of total landslides whereas debris 

flow consists of 124 landslides and has 33.70% of total 

landslides. Debris flow as compared to slide type covered a 

large area. 

A developed database is comprised of landslide inventory 

and 17 landslide causative factors. Possibility of landslide 

occurrences depends on the calculated values of each class of 

causative factors that represent a high and low class of 

probability. These landslide causative factors were integrated 

into the GIS environment to develop the landslide 

susceptibility map. In this study, various significant causative 

factors such as terrain roughness index, drainage density, plan 

curvature, profile curvature, general curvature, geology, land-

use landcover, stream power index distance from stream and 

road, were observed by using the relative effect model and 

show a strong correlation with the landslides of the entire area. 

In case of geology of the study area, the Surgun group A, 

Manshera Granites and Salkhala formation show high 

susceptibility to landslides due to unconsolidated material on 

the slopes, highly fractured and deformed. A total of 58.72% 

of landslide area was observed in these geological units. Slope 

greater than 29 degree indicates a positive and strong 

correlation between the landslide and slope gradient and 

increase the landslide ratio with an increase in slope gradient. 

The slope aspect from northwest to northeast and south aspect 

show more prone to landslides due to the long duration of 

radiation of sun and frost action due to the temperature 

variation and covered 53% of the total landslide area. Among 

the surface aspects, east to southeast and west to southwest 

got a negative correlation with the landslides. Distance from 

the road and stream from 0 to 800m are more concentrated 

and prone to landslides but the relationship between causative 

factors and landslides decreases with increasing the distance 

from road and stream. Distribution of landslides was more 

escalated within 200-400m and >800m from faults. The 

analysis reveals that Elevation from 980 to 2881m indicates a 

positive and strong correlation with landslides. Most of the 

area is found near the Neelum river and road and 

infrastructure development. In case of general, plan and 

profile curvatures, it is observed that concave curvature 

indicates a positive and strong correlation with landslides. 

Landuse landcover classes such as built area, crops, bare land, 

water, and Rangeland are more and highly susceptible to 

landslides. Terrain roughness index of 0.08 to 0.45 indicates 

a high erosion process which increases the rate of landslides 

and is thus prone to landslides. SPI is related to the erosion 

power of runoff water around the area. High rate of runoff 

water shows in the fourth and fifth class which represents high 

possibility of landslides. Drainage density is also a 

hydrological factor found to have high susceptibility in the 

0.34 to 1.36 class of drainage density. In NDWI factor, -0.34 

to 0.17 class is more prone to landslides and shows a strong 

correlation with landslides. NDVI shows a high value from 

0.10 to 0.42 which describes the high probability of landslides 

occurrences. Range of the rainfall from 95.94 to 124.92 mm 

shows positive values of relative effect model which covered 

51.09% of total landslide area. High rainfall classes included 

less vegetation with anthropogenic activities which increase 

the concentration of landslides. 

The traditional academic point system is used to classify 

the AUC into the following ranks for accuracy of models [75, 

76] i.e. excellent (90-100%), good (80–90%), fair (70–80%), 

poor (60-70), and fail (50–60%). Accuracy assessment of the 

model found in the good class of AUC as per traditional 

academic point system. The success and prediction power of 

model is 82.15% and 82.73% which is considered accurate 

and will suggest future research. 

4. Conclusions 

Landslide susceptibility mapping is a primary and 

significant role to determine the landslide-affected areas in 

mountain regions. A comprehensive study is required to 
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understand and resolve the landslide phenomenon. 

Identification of the spatial probability of landslide-prone 

areas was the objective of this study by using the Relative 

Effect model. The hundred sixty-eight (368) landslide areas 

were digitized in the landslide inventory map. 17 causative 

factors such as slope gradient, slope aspect, elevation, terrain 

roughness index, general curvature, profile curvature, plan 

curvature, drainage density, stream power index, distance 

from river, distance from road, distance from faults, geology, 

rainfall, landuse landcover NDVI, and NDWI were integrated 

to prepared the landslide susceptibility map. Every causative 

factor was an important role to find out the effect of 

occurrence and non-occurrence of landslides with the help of 

Relative effect value. The negative values showed non-

landslide occurrence and the positive value indicated 

occurrence of landslide.  

Landslide susceptibility zonation map is classified into 

four classes such as low, moderated, high, and very high.  The 

result showed that 15.05% and 33.75% were considered very 

high and high categories of landslide susceptibility. The 

analysis showed that the success rate curve was 82.15% and 

the prediction rate was 82.73% for landslide susceptibility 

mapping. Overall finding of this study shows the good 

performance of the model in landslide susceptibility 

assessment and will help the new research, planner, and 

developer for better planning and management of damage to 

infrastructure and identify future landslide-prone areas in the 

study area. The developed map can also be used for hazard 

and risk assessment of landslides. It is suggested to carry out 

this model in similar studies in other landslide-prone areas. 
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