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A B S T R A C T 

Planning and management are necessary tools throughout the world, especially in a mountainous regions where various natural hazards affect the area 

socially and economically. Landslides are one of the most common natural hazards in mountainous regions throughout the world. For this purpose, 

qualitative and quantitative methods and landslide susceptibility mapping were used to reduce the probability of landslide occurrence in an affected area 

and landslide mitigation. The study was focused on landslide susceptibility mapping in Neelum valley using a relative effect model integrated with 17 
causative factors of landslides. These factors such as elevation, slope gradient, slope aspect, general curvature, geology, plan curvature, profile curvature, 

drainage density, stream power index, distance from stream, distance from road, topographic roughness index, Normalized difference wetness index, 

distance from fault, rainfall, landuse landcover, and Normalized difference vegetative index were used for analysis. Neelum valley is the part of the 
Himalayan region that is often experiencing landslide hazards frequently. Among other methods, it is a statistical method prepared within the Geographical 

information system environment to develop landslide hazard zones in Neelum valley. The landslide inventory map was shown the presence of past landslides 

in the study area by using Google Earth and remote sensing imageries. Total landslides were 368 in number, 30% (110) for testing purposes and 70% (258) 
for training purposes.  The validation of Relative effect model was calculated with the Area under the curve such as the success rate curve and the 

prediction rate curve. This was adopted to check the validation and optimum landslide susceptibility zone categorization. The success rate curve of the 

model was 82.15% calculated whereas 82.73% was the predictive rate curve. According to the study, landslide susceptibility mapping was classified into 
four classes with 18.14% of the area being very high zone, 34.04% of the area being high zone, 30.26% area being moderately susceptible zone and 17.56% 

of the area being low susceptible to landslide occurrence zone. Hence, the results of this study highlight the spatial information of the area that may face 
landslide hazards and may be very helpful to planners, engineers, government agencies, stakeholders and other participants for the prevention, mitigation, 

management, and monitoring of landslide hazards and this model may also be applicable in other landslide areas. 
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1. Introduction 

Landslides are the type of natural destructive and 

geological calamities which are widely found in 

unequaled and steep terrain, having severe impacts on the 

economy and society [1, 2]. The rate of landslides is 

increasing with the contribution of other types of natural 

hazards such as rainfall, floods, snow, and earthquakes 

[3]. Unpredictable expansion and increasing population 

and urbanization of uneven topographic regions are the 

other anthropogenic factors to increase the landslides in 

developed and underdeveloped countries [4, 5]. Research 

and academic institutes and government agencies are 

working continuously on landslide occurrences to find out 

solutions for analyzing, predicting, and mitigating them 

[6]. 

Pakistan consists of the three largest northern 

mountain ranges named Himalaya, Karakoram, and 

Hindukush. The Himalayas is the most devastating and 

prone landslide range [7] having 30% of total landslides 

in the world [8]. It consists of rugged mountains, active 

tectonic activities, steep slopes, climatic conditions, deep 

weathering of strata, geology, and infrastructure on the 

unstable slope [2, 9, 10]. Seismic activities and monsoon 

rainfall are the primary triggering factors of landslides 

[4]. During the rainy season (monsoon season June to 

August), a massive amount of landslides are triggered due 

to the contribution of tectonic activities and geological 

properties in the Himalayasrange [10]. Approximately, more 

than 200 people and 1 billion US Dollars in economic losses 

take place due to landslide hazards every year [11].  

Neelum Valley is the largest district of Azad Kashmir 

and the part of the lesser Himalayan mountain where 

frequent landslides occur every year. The landslides are 

triggered due to various causative factors related to 

natural and human and trigger factors such as rainfall, 

tectonic movements, stream erosion, snowfall, and storm 

waves [12]. October 8, 2005, was a time when a very 

devastating hazard such as an earthquake with a 7.6 Mw 

magnitude triggered and approximately, 26,000 people 

died, directly and indirectly, millions of people lived 

without a home, and approximately, 5million US$ 

property was destroyed [13]. Every year landslides are 

affecting hundreds of people and approximately, one 

billion US$ of property is lost [14, 15]. The tendency of 

landslide occurrence has been listed from 1990 to 2005 

and these trends will further increase in the future caused 

of human interference over the fracture and frail slopes 

[16]. Population growth takes place pressure on the 

fragile and weak slopes because of agriculture, 

infrastructure development, and habitation [10]. On the 

other side, the area of forest decreases, which produces 

more landslide risk [17, 18]. Seasonal and diurnal 

temperature and immature and young geology are other 

factors that help in the occurrence of landslides [18, 19]. 

Many scientific societies and communities have 

worked on landslide susceptibility in various regions of 
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the world [20, 21]. Landslide hazard mitigation and 

management studies are linked with landslide 

susceptibility mapping [10, 22]. The preparation of a 

Landslide susceptibility map is essential to understand the 

slope activities and their regulation components [4]. 

Landslide susceptibility mapping showed the target area into 

different zones according to the chance of landslide 

occurrence          [23, 24]. Landslide inventory represents the 

extent of landslides, their types, and past and present 

landslide intensity in the target area [25, 26]. Landslide 

inventory, causative factors, and suitable methods have been 

used for the assessment of landslide susceptibility [27, 28]. 

Geospatial technology plays an effective role in 

landslide analysis. The use of geospatial techniques has 

been enhanced because of the statistical abilities, spatial 

information, and handling the large datasets [29, 30]. 

Various prediction methods such as qualitative, 

quantitative, direct, and indirect approaches have been 

utilized for assessing landslide susceptibility worldwide 

[31, 32]. The qualitative approaches such as heuristic and 

direct Geo-morphological mapping are based on personal 

knowledge and skills whereas the quantitative approaches 

are based on a numerical calculation between the 

landslides with their controlling factors [33, 34]. 

Hence, an effort has been made to create the landslide 

inventory map, select the suitable landslide causative 

factors and develop the landslide susceptibility map to 

show the landslide susceptibility areas by applying a GIS-

based Relative Effect model. Relative Effect model is a 

bivariate statistical and quantitative approach, which 

provided the relationship between the causative factor 

with landslide events in the study area. The predictability 

and accuracy of the model were carried out through the 

success and prediction rate curves in landslide 

susceptibility modeling. The result of the study provides 

help to the government, private, academic, and research 

institutes, planners, and decision-makers to emphasize 

proper mitigation scales. 

2. Material and Methods 

2.1 Investigation site  

Neelum Valley is the largest district and most 

beautiful place of Azad Kashmir having an attractive and 

resplendent spot for the tourist community (Fig. 1). It is 

located at longitude 73-75N and latitude 32-36E degree 

and situated toward the 20Km Northeast of Muzaffarabad 

city. Approximately, 3737Km
2
 area is covered by lesser 

Himalayas with around 1.96 million population [35]. 

Himalaya George is called the area of Neelum Valley due 

to its rugged topography having lush green mountains, 

valleys, waterfalls, small terraces, and freshwater streams. 

The elevation of Neelum valley is between 980 meters 

and 6128 meters above sea level [36]. Sub-humid is the  

 

Fig.1: Study map of Neelum Valley. 

climate of Neelum Valley. Annual precipitation in Neelum 

Valley is 1650 mm [37]. 

2.2 Methodology 

A database of various types of causative factors is 

developed which consists of topographic, hydrologic, and 

other related information derived from the sentinel 2 satellite 

images, geological maps, and digital elevation model (DEM) 

which determined the effect of landslides causative factors 

on landslide spatial arrangement (table 1). In the GIS 

environment, ArcGIS software was utilized for the 

preparation of landslide inventory and thematic maps of 

causative factors. The methodology of landslide 

susceptibility assessment is divided into three sections. 

Table 1: Data used for landslide susceptibility model. 

Factor maps Data Acquisition  Scale/ 
Resolution 

Methods 

Landslide 
inventory 

Field data and satellite 
images 

1:50,000 Polygons and 
points 

Lithology Geological map 1:50,000 Polygons 

Slope 

Gradient 

ALOSPALSAR DEM 12.5m Natural Break 

Slope Aspect ALOSPALSARDEM 12.5m Natural Break 

Elevation  ALOSPALSAR DEM 12.5m Natural Break 

General 
Curvature 

ALOSPALSAR DEM 12.5m Natural Break 

Profile 
Curvature 

ALOSPALSAR DEM 12.5m Natural Break 
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Plan 
Curvature 

ALOSPALSAR DEM 12.5m Natural Break 

TRI ALOSPALSARDEM 12.5m Natural Break 

SPI ALOSPALSAR DEM  12.5m Natural Break 

Distance from 
stream 

ALOSPALSAR DEM 12.5m 200m interval 

Drainage 

density  

ALOSPALSAR DEM 12.5m  Natural Break 

Distance from 
road 

Topographic map 1:50,000 200m interval 

NDVI Sentinel 2 10 m Natural Break 

NDWI Sentinel 2 10 m Natural Break 

Distance from 
faults 

Geological maps 1:50000 200m interval 

Land-use 

Land-cover 

Sentinel 2 10m classification 

Rainfall (mm) GPM 10m Natural Break 

2.3 Landslide inventory  

First step was to prepare the past landslide inventory 

map. For this purpose, the landslide sites were collected 

through Google Earth and GPS in a detailed field 

investigation. Integrated the field information with the 

Sentinel satellite images at a spatial resolution of 10m is 

utilized for mapping and accuracy of landslides. Fig. 2 

shows the diagnostic shapes of different types which define 

landslide classification using Varnes classification [38]. A 

total of 368 landslides have been identified. The digitized 

landslides were rasterized with the 12.5×12.5 m spatial 

resolution. This rasterized landslide inventory was used to 

calculate the number of grids in different classes of each 

causative factor for computing the ratio of landslide 

frequency. The landslide inventory database is randomly 

divided into subsets of 70% for training and 30% for testing. 

 

Fig. 2: Spatial distribution of various types of landslides in the study area. 

2.4 Causative factors 

After developing the landslide inventory map, Neelum 

Valley with 17 causative factors such as geology, distance 

from road, distance from stream, distance from fault, slope 

gradient, elevation, slope aspect, slope general curvature, 

profile curvature, stream power index, plan curvature, 

drainage density, terrain roughness index, NDVI, NDWI, 

LULC, and rainfall were selected for the landslide 

susceptibility assessment and mapping. 

2.5 Geological map 

Geology is an important factor and has a close relation 

with landslides [39]. The lithology and tectonic setting have 

a great impact on slope stability. It also affects the 

permeability and strength of soil and rocks. In Neelum 

Valley, landslides and surface geology have strong relations 

with each other. The surface geology of Neelum valley is 

mapped from the Geological map of Northern Pakistan 

which is acquired from the National Center of Excellence in 

Geology, University of Peshawar prepared by M.P. Searle 

and M. Asif Khan in 1996 (Fig. 3a) which contains such 

formations that is Murree formation (Nasueri group), Surgun 

group, Kundal Shahi group (Saikhala Series), and Nani 

group. These formations were different complex types of 

rocks (table 3). 

2.6 Topographic parameters 

ALOSPALSAR DEM having a 12.5-meter resolution 

was utilized to extract the topographic and hydrologic 

parameters. Topographical parameters extracted from DEM 

were slope gradient, slope aspect, elevation, general 

curvature, profile curvature, plan curvature, and terrain 

roughness index.  

Slope gradient is the change of slope angle from general 

to steepest where the flow of water and movement of other 

materials moves toward slope direction. It plays also a vital 

role in the geomorphology and hydrology of the area. Rate 

of change of slope gradient describes the speed of surface 

and surface flows [40-42]. Therefore, frequency of landslide 

occurrence depends on the slope gradient. The slope map of 

Neelum Valley has been extracted from the ALOSPALSAR 

DEM having a 12.5-meter resolution, as shown in Fig. 3b. 

The slope map is classified into 0-18, 18-28, 28-38, 38-48, 

and 48-83 (table 3). 

Dimension of the slope is described through the slope 

aspect. It has a great effect on landslide occurrences and has 

been utilized for landslide susceptibility mapping [34]. 

According to previous studies, the slope aspect has an 

indirect impact on landslide occurrences. Duration and 

sunlight intensity, rainfall, and soil moisture are the factors 

where the slope aspect depends on them. These factors have 

a great relation with landslides and vegetation cover [43]. 

The slope aspect factor has been extracted from 

ALOSPALSAR DEM as shown in Fig. 3c. There are nine 

dimensions such as flat, north, northeast, east, southeast, 

south, southwest, west, and northwest, and has been 

displayed in Fig. 3c, and Table 3. 

Elevation is the topographic factor and has a significant 

role due to landslides taking place from up to downward 

direction [44]. It affects different geological and 

geomorphological conditions. Elevation differentiates 

maximum and minimum points within landscape [45]. 
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ALOSPALSAR DEM with 12.5m resolution has been used 

to extract the elevation factor as shown in Fig. 3d. 

Landslides occur due to the variation in elevation among the 

crown and toe caused by gravity which affects the whole 

system of terrain. 

Curvature describes the morphology of topography with 

respect to changes in slope angle [46, 47]. It is also an 

important factor in landslide events where flow direction 

depends on the curvature of the landscape [24, 48]. 

Curvature was found in three sub-regions such as concave, 

convex, and flat. Concave area is positive values, convex 

consists of negative, and flat has zero value due to its nature. 

DEM was utilized to extract general curvature and classified 

it into five classes in this study as shown in Fig. 3e. 

Profile curvature defines the vertical plan where it finds 

out the impact of topographical morphology on flow 

circulation. Profile curvature works on the changing angle of 

slope on flow path [49]. Profile curvature worked as opposed 

to plan curvature factor. It is divided into sub-regions such 

as concave, convex, and flat according to hill slope. 

ALOSPALSAR DEM was used to generate the profile 

curvature in the GIS environment as shown in Fig. 3f. 

Plan curvature defines as the horizontal plane where it 

find-out the impact of topographical morphology on flow 

circulation. Plan curvature works on the convergence and 

divergence of water during that time when erosion takes 

place through flow of water on the surface [50-52]. Plan 

curvature was extracted from DEM as shown in Fig. 3g.  

Terrain roughness index calculates the difference 

between the maximum and minimum height points in a total 

area [53]. It is an important morphometric causative factor 

that regulates slope stability. It shows the movements of the 

slope and plays an indirect role in landslide occurrence. TRI 

is calculated by using the following equation: 

                          √| |               (1) 

Whereas the max and min show the maximum and 

minimum values [54]. Terrain Roughness index was 

generated from ALOSPALSAR DEM as shown in Fig. 3n. It 

was categorized into five classes (table 3). 

2.7 Hydrological parameters 

Hydrological parameter is drainage density, stream 

power index, and rainfall. 

Drainage density is a hydrological parameter. This 

parameter is calculated through the total length of stream or 

river divided by total area of the drainage basin. This 

parameter shows the runoff water from the channels. 

However, drainage density is the quantitative value. Higher 

value represents an increase in the runoff ratio of water. 

Higher drainage density value shows high possibility of 

landslide occurrence. The equation of drainage density is 

given below: 

                            
  

  
     (2) 

Whereas DD is drainage density, Lk is the total length of 

stream or river and Ak represents the total area of the 

drainage basin. The drainage density map of Neelum Valley 

was prepared from ALOSPALSAR DEM as shown in Fig.3j.  

Stream power index is calculated as the erosion property 

of the stream in the flow accumulation area [55]. It describes 

the erosion power of the stream with the slope [56]. The 

higher value of stream power index shows the high 

probability of landslides due to the high possibility of 

erosion power. Stream power index is calculated by: 

                                     (3) 

Whereas A represents the accumulated area and b is a 

slope (degree). ALOSPALSAR DEM was used to prepare 

the SPI map as shown in Fig. 3m. The SPI map was 

classified into five classes such as very low, low, moderate, 

high, and very high. The positive values of Relative Effect of 

each class of steam power index indicated high ratio of 

landslide found where negative values have no probability of 

landslide events. 

2.8 Rainfall map 

Rainfall is a very prominent and triggering factor in 

landslide occurrences [57]. Majority of landslides occurred 

due to the rainfall-triggering factor. Occurrence of landslides 

depends on the amount of rainfall as well as duration of 

rainfall so it can be said that landslides occurrence is directly 

proportional to the amount and duration of rainfall [58, 59]. 

It reduces the cohesion power of soil under saturation 

conditions [60]. Long-term duration of rainfall causes 

landslides in the study area. It produces surface runoff as 

well as discharge of unconsolidated ground material. Global 

precipitation measurement mission (GPM) data was utilized 

for the rainfall data of the study area. This rainfall data was 

used to prepare the rainfall map by using the IDW 

interpolation technique in GIS (Fig. 3q). The rainfall values 

were categorized into five classes (table 3). 

2.9 Environmental factors 

Environmental factors include NDVI, NDWI, and LULC  

NDVI and NDWI 

Satellite images such as Sentinel Images with 10-meter 

resolution were downloaded from the Sentinel Website. 

Sentinel Images were used to extract the NDVI and NDWI. 

Normalized difference vegetation index is a significant role 

in landslide occurrence and landslide susceptibility mapping 

[61]. The purpose of NDVI is to calculate the density of 

vegetation in form of forest, agriculture, range, cropland, 

etc., on the land surface [62-65]. The presence of dense 

vegetation decreases the landslide occurrence but absence of 

vegetation increases the rate of landslide events due to less 

cohesion power in soil. The NDVI is the difference between 

the red band and Infrared band of satellite images. The 

equation of NDVI is given below: 

           
       

       
     (4) 
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Where NIR is the near-infrared band and RED 

represents the red band of satellite image. The range of 

NDVI is between -1 to +1. The +1 value represents highly 

concentrated and dense vegetation and -1 represents a low 

concentration of vegetation. Satellite image such as Sentinel 

2 was used to prepare the NDVI image of the study area as 

shown in Fig. 3k. The NDVI map was classified into five 

classes.  

McFeeters developed the Normalized difference water 

index in 1996 to determine the water body associated with 

wetlands [66]. The equation used for NDWI is given below: 

             
                   

                     
    (5) 

The result of NDWI shows that the value greater than 

zero represents the water surface area and the value equal to 

or less than zero represents non-water surface area. This 

index is based on remote sensing satellite base image 

phenomenon. Sentinel 2 satellite image was used to prepare 

the index map of the study area as shown in Fig. 3l. 

Landuse landcover map 

Landuse is also a key factor in the modification of 

landuse patterns and consolidated slope material through 

human intervention and changes in the environment [67]. It 

also affects the hydrology of the area as well as the 

mechanical properties of the soil. Landuse factor is 

considered responsible for the evaluation of landslide 

susceptibility [68]. In hilly areas, road networks with 

infrastructure, etc., lead to a loss of the stability of slopes 

due to overburden and undercutting. Deforestation occurs 

due to the expansion of towns and villages which reduces the 

cohesion power provided by roots. 

Generally, low land cover includes non-vegetated areas 

and bare land is more suspected that cause landslides prone 

[21]. A high land cover includes densely vegetated areas that 

strengthen the ground because dense vegetation is 

preventing erosion. Cultivation causes the incidences of 

landslides due to saturation of soil and removal of the 

surface soil layer. Sentinel 2 LULC image having 10m 

spatial resolution was downloaded from the ArcGIS website 

[69]. This image is prepared using maximum likelihood 

based on supervised classification. This image was used to 

clip the landuse landcover area of the study area. LULC map 

has eight LULC units of bare land, build area, clouds, crops, 

Rangeland, snow/ice, trees, and water (Fig. 3o) and the area 

of each unit was shown in table 3. 

2.10  Proximity factors 

Distance from Road, stream, and fault 

Generally, Linear features including roads and streams 

decrease resisting force which leads to instability of slope 

and reduces the factor of safety [70, 71]. Faults are the 

breaks found in the tectonic features which decrease the 

strength of the slope. Thereby, distance from road, steam, 

and fault is linked with the possibility of landslides. River 

and road were digitized from topographic sheets of the study 

area. Faults map was prepared from the fault map of Neelum 

valley [72].   

 Distance from stream, road, and fault is calculated by 

using the multiple buffer tool in ArcGIS software. The 

distance from the road, stream, and fault also has a great 

effect on the landslide occurrence. This effect was examined 

by utilizing the Relative effect model for the assessment of 

landslide susceptibility.  This tool created the five buffer 

zones with 200-meter intervals on the map as shown in Fig. 

3(h, i, p). These distances were 0-200, 200-400, 400-600, 

600-800, and > 800 meters. 
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Fig. 3: Thematic maps of the study area: (a) geology; (b) slope gradient; 

(c) slope aspect; (d) elevation; (e) general curvature; (f) profile 

curvature; (g) plan curvature; (h) distance to road; (i) distance from 
river; (j) drainage density; (k) NDWI; (l) NDVI; (m) stream power 

index; (n) TRI (o) Landuse Landcover; (p) distance from faults; (q) 

rainfall. 

2.11 Description of methods 

Relative Effect model has been applied for landslide 

susceptibility mapping in a GIS environment to achieve the 

objectives of the study. Next step was to find out the relative 

effect values of each causative factor by introducing the 

relative effect function. Relative effect function has been used 

to create the correlation between the landslide causative 

factors and past landslide events. In Relative Effect model, for 

each class of each causative factor, the relative effect function 

[73, 74] was computed by using the following equation. 

            (
  

  
  )    (6) 

Whereas, 

                 
   

   
     (7) 

                 
 

 
     (8) 

Whereas RE is the Relative Effect, sld consists of a total 

number of landslide pixels in an individual class. SLD is the 

total number of landslide pixels in the target area. A is the 

total number of pixels in the target area and a contains the 

total number of pixels in an individual class. ɛ is a very small 

l 

m 

n 

o 

p 
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positive value near zero. Relative Effect values of each class 

of 17 causative factors were calculated as shown in table 3. 

2.12 Landslide susceptibility maps and validation 

This logarithmic model gives the analysis of positive and 

negative quantitative effects. All the causative factors maps 

were integrated into the GIS environment to determine the 

landslide susceptibility index map. As a result, landslide 

susceptibility zones were developed on the bases of the 

Landslide susceptibility index. This algebraic summation 

equation is given as; 

             ∑       (9) 

In this study, four landslide susceptibility zones have been 

developed from low to very high classes in Neelum Valley. 

The Relative Effect model base on the scale consists of 

positive and negative values. There are three cases found in 

the present relationship analysis [73, 74]. 

 Effect of Negative values: when the value of Relative 

Effect scale is less than zero, the effect of probability of 

landslide susceptibility would be decreased.  

 Effect of Positive values: if the value of Relative Effect 

scale is greater than zero, the chances of a landslide would 

show high. 

 Effect of Zero value: the zero value of Relative Effect 

would show no effect on landslide susceptibility. 

 These values for each class of causative factor determined 

the relationship between the landslide sites and each class of 

causative factor map. 

 In third section, prediction and success curve rate were 

used to find out the validation and performance of relative 

effect model. 

3. Result and Discussion. 

Relative Effect model has been utilized in different areas 

of the world for landslide hazard mapping. In this article, the 

landslide susceptibility zone map of Neelum valley has been 

prepared by using Relative effect model which shows 

landslide-prone areas. These prone areas indicated the 

relationship between the causative factors and spatial 

distribution of past landslide inventory. 

3.1 Landslide inventory of Neelum Valley 

A Landslide inventory map shows the distribution of 

landslides in the Neelum valley separately. A Landslide 

inventory map is a primary step for the prediction of landslide 

susceptibility zonation but it is very difficult to take and map 

every landslide point because of time and tools availability. A 

total of 368 landslide sites were delimited, interpreted, and 

digitized on Sentinel-2 images. Field survey was conducted 

due to remove the uncertainty in the landslide inventory data 

and ground truth. Fig. 4 shows the different locations of 

landslides at different points. These landslides were classified 

into major types such as slides, debris flow, and rockfall 

according to Verne's classification. Among the landslides,  

66.22% of landslides are slides, debris flows are the second 

occurring phenomena which have 33.70%. Rockfall is found 

in the least amount and has 1.08% of landslides. During the 

field survey, majority of the landslide were recorded near the 

road and rivers. The smallest landslide is identified with an 

area of 0.0001km
2
 while largest landslide covered an area of 

0.3236Km
2
. A total number of 368 landslides, slides were 

240 in number and covers 3.4717 Km
2 

of the total landslide 

area. 124 landslides are the debris flow having 3.77km
2
 of 

total landslide area while rockfall contains 4 landslides and 

covers 0.05Km
2
 landslide area (table 2). 

Table 2: Mapped landslide types, min/max area of landslides in the study 

area. 

Landslides in Neelum Valley 

LS Types LS LS (%) 
Min Area  

(Km2) 

Max Area 

 (Km2) 
Average  

Slide 240 65.22 0.0002 0.33 3.48 

Debris Flow 124 33.70 0.0010 0.22 3.76 

Rock Slide 4 1.08 0.0032 0.02 0.05 

Total 368 100    

 

Fig. 4: Landslide inventory map of Neelum Valley. 

3.2 Relationship between landslides occurrences and 

causative factors 

Geology 

 The relation of landslide with the Lithological units 

through RE model shows that Tanawal formation, 

Manshera granite, Proterozoic (Kundalshahi group), and 

Paleozoic (Surguen Group-C) are high and positive relative 

effect values which represent high concentration of 

landslide occurrence. They have the RE value of 0.55, 

0.25, 0.24, and 0.11 respectively (Fig. 5a, table 3). These 

classes of geology factor describe the weak structure and 

fragile types of rocks. The precipitation in uncovered 

forestation areas, deforestation, weak roots of trees, 

weathering, and frost action were also involved to increase 

weakness of geology of the study area. The lowest values -

0.84 and -0.02 are calculated for the Surgun Group-B and 

Besal eclogites. 
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Slope gradient 

 The result showed that the rate of landslide occurrence 

increases where slope angle is above 38 degrees (Fig. 5b, table 

3). In the slope gradient, positive RE values of 0.06 and 0.05 

are calculated for 38-48 to 48-84 classes respectively. Fig. 5b 

represented a strong relationship between landslides and slope 

gradient with increasing the slope gradient of the entire area. 

This slope gradient shows the direct relation with the slope of 

the area and if weak and immature geology is found then the 

landslide ratio increases due to slope. 

 Slope aspect  

 It is observed that northwest to northeast and southward 

aspect shows high intensity of sunlight and precipitation 

which determined the high frequency of landslide events 

(table 3 and Fig. 5c). The lowest relative values were observed 

for east to southeast and southwest to west. North class has a 

high value of 0.31 RE thus highly susceptibility to landslide 

occurrences. 

Elevation 

 The elevation from 980–2219 class shows a high value of 

Relative effect indicating the positive correlation between 

landslides and causative factors. The negative and lowest 

value of class (3493-4075) shows no landslide effect because 

the negative value gives no landslide effect and is less 

susceptible to landslide occurrences in the area. The result 

revealed that the rate of landslide events raised due to 

increasing the elevation as shown in Fig. 5d and table 2.  

General curvature  

 Curvature is composed of flat, concave, and convex. The 

result of each class is shown in table 3 and Fig. 5e, that the 

concave region identified the high relative effect values in first 

and second class are 0.25 and 0.11, respectively. These values 

reflected the high ratio of landslide occurrence and show a 

strong relationship between the causative factors and 

landslides. A negative correlation was observed for flat and 

convex classes. 

Profile curvature  

 Concave, convex, and flat are the classes of profile 

curvature. Profile curvature works opposite to general and 

plane curvature. A relative effect model was used to find out 

the effect of landslide events on profile curvature. The result 

showed that fifth class showed a high relative value (0.24). 

Fifth class identified the concave region which represented the 

highly susceptible and concentrated to landslide occurrence. 

The overall result is shown in Fig. 5f and table 3. 

Plan curvature 

 Plan curvature has three sub-areas such as concave 

(positive), convex (negative), and flat (zero values). In this 

study, it is classified into five classes. The overall results 

revealed that concave region has a high value in relative effect 

model with the value of 0.23 and 0.15. a positive correlation 

was observed in concave class shows high susceptible to 

landslides (Fig. 5g and table 3). 

Distance from the Road 

 The result shows that possibility of landslides decreases to 

move away from the roads as shown in buffers from 0 to 800 

m. The positive values of distance from road are 0.58, 0.51, 

0.43, and 0.33RE. They represent the high risk and susceptible 

to landslides and decrease the effect as move away (Fig. 5h 

and table 3). Expansion of roads, vibration due to high traffic 

volume, and removal of the material from the toe of 

mountains are the factors. These factors increase the rate of 

landslides and decrease due to decrease the effect of these 

factors. 

Distance from the stream 

 The analysis revealed that distance from 0 to 800m shows 

a strong and positive correlation between the landslide and 

distance from the stream and the highest landslide 

possibilities. The results show that the highest value of 

Relative effect is to find out near the stream and decrease the 

values when increasing the distance from the steam which 

shows the landslide area is decreasing with increasing distance 

from the steam (Fig. 5i and table 3). The lowest RE value of -

0.15 for the class of >800m distance from the stream. 

Distance from faults  

 It is evident from table 2 and Fig. 4, that highest RE values 

0.12 and 0.01 were calculated from the distance to fault class 

of 200-400 and >800m. The observed values are positive, 

representing the strong correlation of landslides with distance 

from fault and high probability of slope failure (Fig. 5p and 

table 3). 

Drainage density  

 The drainage density classes of 0.34-0.68, 0.68-1.02, and 

1.02-1.36 are indicating high RE values of 0.30, 0.34, and 

0.04 respectively, and show a positive and strong correlation 

between landslides and drainage density.  The lowest and 

negative RE value of -0.18 and -0.38 was calculated for class 

0-0.34 and 1.36-1.7 and thus had less influence on landslide 

occurrence and landslide tendency (Fig. 5j and table 3). 

Normalized Difference Vegetation Index  

It is observed that the concentration of landslide occurrence is 

high in class 0.10–0.27 with a value of 0.42 due to less 

concentration of vegetation or deforestation which indicates 

positive and strong correlation between the landslides and 

NDVI whereas 0.42-0.56 class with the value of high 

concentration of vegetation indicates less rate of landslide 

occurrence and thus less prone to landslides (Fig. 5k and table 

3). 

NDWI  

 According to this index, the highest positive Relative 

Effect value of 0.38 and 0.01 is observed for -0.34 - -0.179 

and                -0.48- -0.34 classes respectively. They indicated 

a high rate of landslide tendency which represented a strong 

correlation between landslides and NDWI and highly prone to 

landslides. The lowest and negative values of -0.58, -0.09, and 

-0.31 indicate a weak relationship between NDWI and 
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landslides and have a low rate of landslide tendency (Fig. 5l 

and table 3). 

Stream power index  

 In the stream power index, the third and fourth classes show 

positive relative effect values as compared to the other classes 

which revealed a high probability of landslide occurrence as 

shown in Fig. 5m and table 3. 

Terrain Roughness index 

 The results showed that the positive value of 0.33 and 

0.77RE is calculated for 0.08–0.38 and 0.38-0.45 classes 

respectively. These high relative effect values indicated high 

ratio of landslide occurrence in the study area and showed 

strong and positive relation between landslides and TRI as 

compared to other classes (Fig. 5n and table 3). 

Landuse landcover  

 In case of landuse landcover, mostly all the classes have 

positive values and indicate strong correlation between 

landslides and landuse landcover. The highest positive values of 

0.82 and 0.65 are observed for crops followed by water. The 

snow/ice class is observed negative value of -1.38 indicating 

less susceptible to landslides (Fig. 5o and table 3). 

Rainfall  

 Rainfall is responsible for the majority of landslides and is 

directly proportional to the amount of rainfall.  The calculated 

values for rainfall classes 95.94-108.68 and 108.69-124.92 are 

highest with positive values of 0.09 and 0.44. The results show 

that the probability of a landslide is increasing as the rainfall 

increases and is highly prone to landslides. While the lowest 

and negative values of other classes show less susceptible to 

landslides and a weak correlation between them (Fig. 5q and 

table 3). 

Table 3: Neelum valley, relative effect values of the landslide 

conditioning parameters. 

CAUSATIVE 
FACTOR 

CLASS % OF 
PIXELS 
IN 
CLASS 

% OF 
LANDSL
IDE 
PIXELS 
IN 
CLASS 

RE 

GEOLOGY Glacier 4.08  0 0 
 shengus gensis 5.87  0 0 
 Besal eclogites 35.92  34.53  -0.02 
 Manshera granites 11.39  20.29  0.25 
 Proterozoic (Kundalshahi 

group) 
18.34  31.69  0.24 

 Mesozoic (Surguen group-B) 19.24  2.81  -0.84 
 Paleozoic (Surguen group-C) 3.38  4.35  0.11 
 Cambrian(Tanawal formation-

Surguen A) 
1.78  6.34  0.55 

SLOPE 
GRADIENT 

0 - 17 12.32  8.26  -0.17 

 17 - 28 24.81  22.60  -0.04 
 28 - 38 31.21  33.09  0.03 
 38 - 48 22.78  25.99  0.06 
 48 - 84 8.89  10.05  0.05 
SLOPE ASPECT North 9.93 14.19 0.31 
 Northeast 10.61  11.77  0.05 
 East 12.40  10.96  -0.05 
 Southeast 15.46  15.21  -0.01 
 South 14.87  15.97  0.03 
 Southwest 14.71  13.52  -0.04 
 West 11.94  7.63  -0.19 
 Northwest 10.07  10.74  0.03 
DISTANCE 0 - 200 2.30  8.71  0.58 

FROM ROAD 
 200 - 400 2.17  7.00  0.51 
 400 - 600 2.08  5.64  0.43 
 600 - 800 2.03  4.33  0.33 
 >800 91.43  74.32  -0.09 
DISTANCE 
FROM STREAM 

0 - 200 3.72  16.81  0.65 

 200 - 400 3.63  8.13  0.35 
 400 - 600 3.53  7.77  0.34 
 600 - 800 3.51  7.36  0.32 
 >800 85.61  59.93  -0.15 
GENERAL 
CURVATURE 

-54.64 - -4.48 3.04  5.35  0.25 

 -4.48 - -1.28 25.87  33.17  0.11 
 -1.28 - 0.65 42.65  37.70  -0.05 
 0.65 - 3.85 25.26  20.62  -0.09 
 3.85 - 106 3.19  3.16  -0.00 
ELEVATION 980 - 2219 10.65  31.06  0.46 
 2219 - 2881 20.46  51.23  0.40 
 2881 - 3493 22.92  17.18  -0.13 
 3493 - 4075 26.22  0.53  -1.70 
 4075 - 6128 19.75  0.00  0 
PLAN 
CURVATURE 

-38.90 - -2.83 1.69  2.90  0.23 

 -2.83 - -1.04 13.20  18.83  0.15 
 -1.04 - 0.03 38.27  37.85  0.00 
 0.03 - 1.45 38.17  32.74  -0.07 
 1.45 - 52.18 8.66  7.69  -0.05 
PROFILE 
CURVATURE 

-57.98 - -3.34 1.75  1.98  0.05 

 -3.34 - -1.07 14.09  13.11  -0.03 
 -1.07 - 0.43 49.16  42.11  -0.07 
 0.43 - 2.7 32.04  37.59  0.07 
 2.7 - 38.12 2.96  5.22  0.25 
TERRAIN 
ROUGHNESS 
INDEX 

0.08 - 0.38 6.48  13.94  0.33 

 0.38 - 0.45 20.80  24.46  0.07 
 0.45 - 0.51 36.91  33.10  -0.05 
 0.51 - 0.59 27.07  22.72  -0.08 
 0.59 - 0.90 8.74  5.77  -0.18 
NDVI -1 - 0.10 17.93  8.58  -0.32 
 0.10 - 0.27 12.20  31.79  0.42 
 0.27 - 0.42 18.72  29.60  0.20 
 0.42 - 0.56 27.47  20.54  -0.13 
 0.56 - 0.87 23.69  9.50  -0.40 
NDWI -0.78 - -0.48 27.28  7.12  -0.58 
 -0.48 - -0.34 32.81  33.89  0.01 
 -0.34 - -0.17 17.21  41.50  0.38 
 -0.17 - .0.02 20.25  16.29  -0.09 
 0.02 - 1 2.44  1.20  -0.31 
DRAINAGE 
DENSITY 

0 - 0.34 72.59  48.21  -0.18 

 0.34 - 0.68 13.03  26.11  0.30 
 0.68 - 1.02 9.54  20.75  0.34 
 1.02 - 1.36 4.38  4.74  0.04 
 1.36 - 1.7 0.46  0.20  -0.38 
STREAM 
POWER INDEX 

0 - 162747343 99.97  99.96  -0.0005 

 162747343 - 623864818 0.02  0.01  -0-00001 
 623864818 - 1329103309 0.01  0.01  0-0001 
 1329103309 - 2875203075 0.00  0.02  0-

0000001 
 2875203075 - 6916762112 0.00  0.00  0 
LANDUSE 
LANDCOVER 

Bare Land 8.90 10.83 0.08 

 Built Area 0.23 0.32 0.14 
 Clouds 0.00 0 0 
 Crops 0.16 1.06 0.82 
 Rangeland 45.35 49.54 0.04 
 Snow/Ice 15.62 0.66 -1.38 
 Trees 29.02 34.45 0.07 
 Water 0.70 3.10 0.65 
DISTANCE 
FROM FAULTS 

0 - 200 2.01 0.51 -0.59 

 200 - 400 2.01 2.62 0.12 
 400 - 600 1.99 1.32 -0.18 
 600 - 800 1.94 0.83 -0.37 
 >800 92.04 94.69 0.01 
RAINFALL ‎61.19 - ‎‎71.43‎ ‎41.30‎ ‎29.62‎ ‎-‎‎0.14‎ 
 ‎71.44 - ‎‎82.43‎ ‎20.25 ‎15.29‎ ‎-‎‎0.12‎ 
 ‎82.44 - ‎‎95.93‎ ‎13.88‎ ‎3.98‎ ‎-‎‎0.54‎ 
 ‎95.94 - ‎‎108.68‎ ‎11.08‎ ‎13.69 ‎0.09‎ 
 ‎108.69 - ‎‎124.92‎ ‎13.46 ‎37.40‎ ‎0.44‎ 
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Fig. 5: Thematic maps of the study area: (a) geology; (b) slope gradient; 
(c) slope aspect; (d) elevation; (e) general curvature; (f) profile 

curvature; (g) plan curvature; (h) distance to road; (i) distance from 

river; (j) drainage density; (k) NDWI; (l) NDVI; (m) stream power 
index; (n) TRI (o) Landuse Landcover; (p) distance from faults; (q) 

rainfall 

3.3 Landslide susceptibility zonation (LSZ) 

In the GIS environment, 17 landslide causative factors 

were integrated with their relative effect values (table 2) to 

develop the landslide susceptibility index map of Neelum 

Valley (Equation. 9). The range of susceptibility was (-6.68 

– 4.88) in the landslide susceptibility index map. Higher 

susceptibility values indicated a high rate of concentration of 

landslide occurrence in future. Landslide susceptibility index 

map was classified into four susceptibility classes by using 

the natural break method to prepare the landslide 

susceptibility map and to identify the level of prone areas 

based on the selected factors. These four classes are low, 

moderate, high and very high (Fig. 6). 15.50 % of the area 

was analyzed as the very high susceptibility zone and 

33.75% was considered in the high zone of landslide 

susceptibility. The moderate landslide susceptibility class is 

30.26% and low landslide susceptibility class is 17.56% of 

the entire area. The results showed that a total of 48.80% of 

the area was considered into very high and high 

susceptibility zones which make happen enormous damage 

in future (Fig. 6 and table 3). River and roadsides of the 

valley, infrastructure, and agriculture on fragile slopes are 

considered into very high landslide susceptibility zone.  

 

Fig. 6 Landslide susceptibility zones map Neelum Valley. 

Fig.7 further describes that the low susceptibility class has 

low landslides. The percentage of landslide area in 

moderate and very high susceptibility classes is 

comparatively more whereas, high susceptibility class is a 

high percentage of landslide area as compared to the other 

three classes. 

Fig. 7: Landslide Susceptibility zones of Neelum Valley. 

Table 3: Landslide susceptibility  of Neelum Valley. zone

3.4 Validation and model performance 

Relative Effect model has been used by generating the 

landslide susceptibility zone of Neelum Valley. The 

success and prediction rate curves were used to measure 

the accuracy of Relative Effect model for selected 

causative factors. The success rate curve was obtained by 

comparing the training data set (70%) of landslide 

inventory with the landslide susceptibility map. The 

prediction rate curve was plotted between the testing data 

set (30%) of landslide inventory which is used as validation 

data, with landslide susceptibility maps. These curves were 

calculated by dividing the landslide susceptibility index 

values into 100 classes and then combined with the past 

landslide inventory map. The resultant map indicated that 

existing landslide areas were falling in every susceptibility 

class. The success and prediction rate curves were built by 

mapping the landslide susceptibility index on the x-axis 

and cumulative percentage of landslide occurrence on the 

y-axis (Fig. 8). Both rate curves show the meaningful 

output of Relative Effect model and productive output of 

landslide susceptibility zone map. The traditional academic 

point system is used to classify the AUC into the following 

ranks for accuracy of models [75, 76] i.e. excellent (90-

100%), good (80–90%), fair (70–80%), poor (60–70), and 

fail (50–60%). The qualitative analysis of the AUC of 

success and predictive rate curve of landslide susceptibility 

index map was 82.15% and 82.73% accuracy. AUC rate 

curves were found in the good category. Hence, it was 

found from the analysis that the Relative Effect model 

gives satisfactory results in Neelum Valley. 

Classes Low Moderate High Very High 

Percentage 17.56 30.26 34.04 18.14 
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Fig. 8: Success rate and predictive rate of the landslide susceptibility map. 

3.5 Discussion 

Every year, many human deaths and damage to their 

properties occur due to tremendous landslides. Therefore, a 

piece of comprehensive knowledge is required to understand 

and handle this phenomenon. Identifying past and new 

landslides that occurred in regions is essential to avoid future 

landslides. Various methods and approaches may be used to 

predict the landslide susceptible areas geographically. 

Relative effect model was used in this study to generate a 

landslide susceptibility map and to evaluate the relationship 

between the landslides and causative factors. In this study, a 

detailed landslide inventory map was prepared which is 

classified into three types of landslides included slide, debris 

flow, and rockfall. These types of landslides were examined 

during the field survey. 240 slide types of landslides were 

calculated having 65.22% of total landslides whereas debris 

flow consists of 124 landslides and has 33.70% of total 

landslides. Debris flow as compared to slide type covered a 

large area. 

A developed database is comprised of landslide 

inventory and 17 landslide causative factors. Possibility of 

landslide occurrences depends on the calculated values of 

each class of causative factors that represent a high and low 

class of probability. These landslide causative factors were 

integrated into the GIS environment to develop the landslide 

susceptibility map. In this study, various significant 

causative factors such as terrain roughness index, drainage 

density, plan curvature, profile curvature, general curvature, 

geology, land-use landcover, stream power index distance 

from stream and road, were observed by using the relative 

effect model and show a strong correlation with the 

landslides of the entire area. In case of geology of the study 

area, the Surgun group A, Manshera Granites and Salkhala 

formation show high susceptibility to landslides due to 

unconsolidated material on the slopes, highly fractured and 

deformed. A total of 58.72% of landslide area was observed 

in these geological units. Slope greater than 29 degree 

indicates a positive and strong correlation between the 

landslide and slope gradient and increase the landslide ratio 

with an increase in slope gradient. The slope aspect from 

northwest to northeast and south aspect show more prone to 

landslides due to the long duration of radiation of sun and  

 

frost action due to the temperature variation and covered 

53% of the total landslide area. Among the surface aspects, 

east to southeast and west to southwest got a negative 

correlation with the landslides. Distance from the road and 

stream from 0 to 800m are more concentrated and prone to 

landslides but the relationship between causative factors and 

landslides decreases with increasing the distance from road 

and stream. Distribution of landslides was more escalated 

within 200-400m and >800m from faults. The analysis 

reveals that Elevation from 980 to 2881m indicates a 

positive and strong correlation with landslides. Most of the 

area is found near the Neelum river and road and 

infrastructure development. In case of general, plan and 

profile curvatures, it is observed that concave curvature 

indicates a positive and strong correlation with landslides. 

Landuse landcover classes such as built area, crops, bare 

land, water, and Rangeland are more and highly susceptible 

to landslides. Terrain roughness index of 0.08 to 0.45 

indicates a high erosion process which increases the rate of 

landslides and is thus prone to landslides. SPI is related to 

the erosion power of runoff water around the area. High rate 

of runoff water shows in the fourth and fifth class which 

represents high possibility of landslides. Drainage density is 

also a hydrological factor found to have high susceptibility 

in the 0.34 to 1.36 class of drainage density. In NDWI 

factor, -0.34 to 0.17 class is more prone to landslides and 

shows a strong correlation with landslides. NDVI shows a 

high value from 0.10 to 0.42 which describes the high 

probability of landslides occurrences. Range of the rainfall 

from 95.94 to 124.92 mm shows positive values of relative 

effect model which covered 51.09% of total landslide area. 

High rainfall classes included less vegetation with 

anthropogenic activities which increase the concentration of 

landslides. 

The traditional academic point system is used to classify 

the AUC into the following ranks for accuracy of models 

[75, 76] i.e. excellent (90-100%), good (80–90%), fair (70–

80%), poor (60-70), and fail (50–60%). Accuracy 

assessment of the model found in the good class of AUC as 

per traditional academic point system. The success and 

prediction power of model is 82.15% and 82.73% which is 

considered accurate and will suggest future research. 
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4. Conclusions 

Landslide susceptibility mapping is a primary and 

significant role to determine the landslide-affected areas in 

mountain regions. A comprehensive study is required to 

understand and resolve the landslide phenomenon. 

Identification of the spatial probability of landslide-prone 

areas was the objective of this study by using the Relative 

Effect model. The hundred sixty-eight (368) landslide areas 

were digitized in the landslide inventory map. 17 causative 

factors such as slope gradient, slope aspect, elevation, terrain 

roughness index, general curvature, profile curvature, plan 

curvature, drainage density, stream power index, distance 

from river, distance from road, distance from faults, geology, 

rainfall, landuse landcover NDVI, and NDWI were 

integrated to prepared the landslide susceptibility map. 

Every causative factor was an important role to find out the 

effect of occurrence and non-occurrence of landslides with 

the help of Relative effect value. The negative values 

showed non-landslide occurrence and the positive value 

indicated occurrence of landslide.  

Landslide susceptibility zonation map is classified into 

four classes such as low, moderated, high, and very high.  

The result showed that 15.05% and 33.75% were considered 

very high and high categories of landslide susceptibility. The 

analysis showed that the success rate curve was 82.15% and 

the prediction rate was 82.73% for landslide susceptibility 

mapping. Overall finding of this study shows the good 

performance of the model in landslide susceptibility 

assessment and will help the new research, planner, and 

developer for better planning and management of damage to 

infrastructure and identify future landslide-prone areas in the 

study area. The developed map can also be used for hazard 

and risk assessment of landslides. It is suggested to carry out 

this model in similar studies in other landslide-prone areas. 
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