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A B S T R A C T 

Agents can use communication to coordinate their actions and achieve their goals. The agents in multi-agent reinforcement learning (MARL) have the 

ability to enhance their overall learning performance by acquiring communication skills. They can transmit various types of messages to either all agents or 

particular groups, utilizing diverse communication channels. Their study on MARL with communication (Comm-MARL) is expanding. Nonetheless, 

currently, there is no methodical approach to differentiate and categorize present Comm-MARL (Communication Multi-agent reinforcement learning) 
systems. This article surveys recent research in the Comm-MARL domain, scrutinizing diverse communication aspects that could be incorporated into 

MARL systems. Several dimensions are suggested to examine, establish, and contrast Comm-MARL systems. This paper presents a comprehensive review of 

the nine dimensions influencing communication in multi-agent collaboration. The dimensions explored include communication type, communication policy, 
communicated messages, message combination, inner integration, communication constraints, communication learning, training schemes, and controlled 

goals. By examining these dimensions, the study aims to shed light on the intricate dynamics of agent interaction in complex environments. This review 

emphasizes the significance of effective communication strategies in achieving common objectives among agents and highlights the importance of factors 
such as context awareness, adaptability, and learning from past experiences. The insights provided in this paper offer valuable guidance for enhancing 

collaboration and communication strategies across various multi-agent systems and applications. 

Keywords: Reinforcement Learning, Multiagent, Centralized, Decentralized, Concatenation, Observable Environment. 

1. Introduction 

Multi-agent collaboration refers to the process of 

multiple agents working together to achieve a common goal 

or set of goals. Collaboration among agents involves 

communication, coordination, and cooperation, where agents 

exchange information and coordinate their actions to achieve 

a common goal [1]. The field of multi-agent systems has 

gained significance because of its numerous applications in 

recent years, in various domains such as robotics, self-

directed vehicles, and communication networks. Multi-agent 

collaboration is a field of research that studies how multiple 

agents can work together to acquire a common objective. 

Agents can be anything from physical robots to software 

programs and they can be either cooperative or competitive. 

The term "collective intelligence" refers to the ability of a 

group of people to solve problems more effectively than any 

individual could. This is because when people collaborate, 

they can pool their knowledge, skills, and perspectives to 

come up with better solutions  [2]. In order to be successful, 

agents must be able to overcome a number of challenges 

including: 

(a) Asymmetry: Agents may have different capabilities, 

knowledge and goals. 

(b) Non-stationary: The environment may change over time 

and agents must be able to adapt to these changes.                           

Opportunism: Agents may try to exploit each other in order 

to achieve their own goals. Despite these challenges, multi-

agent collaboration can be a powerful tool for solving 

complex problems. For example, multi-agent systems have 

been used to control robots in manufacturing, to coordinate 

traffic flow and to play games. The reinforcement learning 

paradigm known as "multi-agent reinforcement learning" [3] 

(MARL) relates to interaction with both the environment and 

each other, with the aim of acquiring knowledge and 

improving their ability to achieve their respective objectives.  

MARL is a challenging problem due to the fact that agents 

must learn to coordinate their efforts to accomplish their 

goals, while also avoiding being exploited by other agents. 

Communication can be a powerful tool for improving the 

performance of MARL agents [4]. By communicating with 

each other, agents can share information about the 

environment, their goals, and their current state. This 

information can be used to coordinate actions, avoid 

collisions, and learn more quickly. 

1.1 Tools and Technologies 

Multi-agent collaboration can be aided by a variety of 

tools and technologies, including [5]: 

1.1.1 Agent development environments  

These environments provide developers with the tools 

and resources they need to create and test multi-agent 

systems. 

1.1.2 Communication protocols 

These protocols define how agents can communicate 

with each other. 

1.1.3 Distributed databases: 

These databases store information that is shared among 

agents.  

1.1.4 Machine learning algorithms 

These algorithms can be used to train agents to learn 

from their interactions and improve their performance over 

time. 

1.1.5 Ontologies 

These ontologies define the terms and relationships that 

are used by agents to communicate with each other. 
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1.1.6 Simulation environments 

These environments allow developers to test multi-agent 

systems in a controlled environment. 

1.1.7 Middleware Platforms 

These platforms provide a framework for developing and 

deploying multi-agent systems. 

1.2 Algorithms used 

There are many different algorithms that can be used for 

multi-agent collaboration and the choice of algorithm will 

depend on the specific application and requirement. Some 

common algorithms for multi-agent collaboration include [1-

6]: 

1.2.1 Reinforcement learning 

This algorithm can be used to enable agents to learn from 

their surroundings and improve their performance over time. 

1.2.2 Game theory 

This mathematical framework can be used to model 

strategic interactions among agents. 

1.2.3 Distributed optimization 

This class of algorithms can be used to optimize a global 

objective function in a decentralized manner. 

1.2.4 Consensus Algorithms 

This class of algorithms can be used to enable agents to 

agree on a common value or decision. 

1.2.5 Auctions and market-based mechanisms 

This class of algorithms can be used to enable agents to 

trade goods or services with each other. 

1.2.6 Communication protocols 

This class of algorithms can be used to enable agents to 

exchange information and coordinate their actions. 

Numerous real-world situations involve the interaction of 

multiple agents that have an impact on the shared 

environment. Illustrative instances are self-directed driving, 

sensor networks, robotics, and game playing. A possible 

approach to addressing these problems is MARL, in which 

agents use reinforcement learning (RL) approaches to grow 

cooperative, competitive, or hybrid cooperative and 

competitive behaviors. 

Partial observability is a key presumption in MARL [5, 

6] since agents are usually scattered across the environment. 

Agents in MARL cannot access the status of the entire 

environment instead they are limited to using just their local 

observations. Since each agent not only interacts with a 

dynamic environment but also is impacted by the changing 

and adapting policies of other agents, MARL is also prone to 

the non-stationary problem [7]. Among agents, 

communication can stabilize learning by conveying valuable 

information such as observations, intentions, or experiences. 

This allows agents to acquire a more comprehensive 

understanding and coordinate their behaviors effectively [8, 

9]. The present study is centered on investigating how 

communication can be harnessed to enhance RL agents in an 

environment, with a particular emphasis on learnable 

communication protocols. Unlike fixed communication 

protocols that are predetermined, learnable communication 

protocols are the ones that agents can acquire through 

learning, rather than being provided with them beforehand. 

This approach aligns with recent research that highlights 

the importance of dynamic and adaptable communication in 

MARL, involving the acquisition of knowledge on when, 

how, and what to communicate. To achieve this, advanced 

deep reinforcement learning techniques have been employed 

[10, 11]. 

Despite several surveys, there is an urgent need for a 

systematic and organized technique to distinguish and 

classify Comm-MARL systems according to research on 

MARL enhanced with communication (Comm-MARL) [12, 

13]. The design and deployment of MARL systems would be 

made easier by the creation of such a methodology. Think 

about the scenario when our intention is to build a new 

Comm-MARL system for a specific task. The system can be 

characterized using various aspects. 

When developing a Comm-MARL system, the following 

aspects should be considered: 

i. Learning to determine with whom to communicate 

ii. Learning to identify when communication is necessary 

iii. Learning to select the relevant information to 

communicate 

iv. Learning to integrate and combine received information 

v. Learning to determine the learning goals that can be 

achieved through communication 

By addressing these aspects, a Comm-MARL system can 

be developed that maximizes the effectiveness of 

communication between agents and enhances the overall 

learning performance. We propose a multidimensional 

structure consisting of 9 dimensions. By thoroughly 

analyzing and comparing these dimensions, we aim to 

provide insight into the creation and design of MARL 

systems with communication components. Recent Comm-

MARL systems may be mapped into this framework to help 

us better grasp the state of the art and identify important 

directions for future system designs. 

In Section 2 of our survey, we summarize recent 

advancements in Comm-MARL systems, highlighting the 

need for a structural methodology. In Section 3, we proposed 

recent works categorized according to each dimension. 

Finally, in Section 4, conclusions based on the proposed 

dimensions are presented. 

2. Literature Review 

The seminal works of CommNet, DIAL, and RIAL have 

enabled deep RL agents to learn to communicate with partial 

observations in cooperative games. In CommNet, local 

observations are processed by a shared neural network and 
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each agent's decisions are influenced by a mean vector of 

messages (hidden layers) from other agents. Similarly, DIAL 

uses a shared network and allows agents to learn to 

selectively attend to certain aspects of their observations and 

the received messages. Reinforced Inter-Agent 

Learning (RIAL) introduces a centralized critic that 

estimates the joint value of actions taken by all agents, 

which is then used to guide communication among agents. 

These works have demonstrated the effectiveness of 

communication in enhancing the functionality of RL agents 

in multi-agent environments. Three key works in the field of 

multi-agent reinforcement learning are the CommNet, DIAL, 

and RIAL. CommNet allows agents to process their local 

observations using a shared neural network and their 

decision depends on observations. RIAL and DIAL, on the 

other hand, allow each agent to learn to exchange a binary or 

real value message that is appropriate for brief exchanges of 

information. These works have paved the way for many 

recent works in the field, which follow the end-to-end 

training paradigm of integrating the learning of 

communication and environment policy [14, 15]. 

Recent works [15, 16] have addressed the limitations of 

fully connected communication and have explored more 

efficient and effective ways for agents to communicate with 

each other. Some of these works have introduced 

communication constraints, such as limited bandwidth or 

range, to more closely mimic real-world communication 

scenarios. Additionally, some works have proposed 

communication structures that are learned or adaptive, rather 

than predefined, allowing agents to better tailor their 

communication to the specific task at hand. 

Earlier approaches used a mechanism that involved a 

gate for each agent to determine if they should send their 

messages or not. ATOC [16] introduces a communication 

method where only agents in a specific observable area are 

involved. Within this group, a bi-LSTM algorithm combines 

the messages from each agent and sends them back to the 

members. IC3Net [17], an extension of CommNet 

deterministically decides whether to send messages to all or 

none. Moreover, IC3Net assigns individualized rewards to 

each agent instead of globally shared rewards, leading to 

more diverse behaviors in competitive or mixed 

environments. ETCNet [18] also employs a gate mechanism, 

but it regularizes the overall probability. In I2C [19], the 

causal effect of whether to communicate with others in peer 

to peer [20] manner is measured. 

The gate mechanism allows communication alternative 

approaches to prioritize communication chances in a more 

explicit and global manner. For example, a certain number of 

agents are chosen by SchedNet [20] and assimilated to 

distribute messages. A shared graph is assimilated by GA-

COMM [21], MAGIC [22], and FlowComm [23] to decide if 

and with whom agents should interact. GA-Comm utilizes 

an attention mechanism to construct an undirected 

communication graph, allowing pairs of agents to 

communicate with each other. On the other hand, MAGIC 

and FlowComm create a directed graph among agents, 

allowing for more fine-grained control over communication, 

with connected agents being able to communicate 

unilaterally or bilaterally. 

Certain works adopt preexisting relationships to convey 

information and comprehend the messages' meaning. The 

agent-entity graph [24] establishes links between agents by 

using a pre-trained graph. Then, linked agents exchange each 

other encoding. Based on networked multi-agent systems 

(NMAS) where dispersed agents are connected, network 

communication [25, 26] is based on the sparse, predefined 

communication network. In this approach, agents exchange 

explicit messages during both training and execution in an 

NMAS. 

To decide on the content of messages, many works make 

use of local information. In some cases, this includes 

individual observations  [27-29]while in others it includes 

intended actions or plans [30, 31]. To prevent the loss of 

information, received messages are often concatenated [32-

34]. In addition, agents may attach signatures to their 

messages to indicate their importance.  

TarMAC and IMMAC use different methods to assign 

weights to received messages. While IMMAC employs 

softmax, TarMAC utilizes an attention mechanism. 

Similarly, GAComm decides whether to communicate and to 

determine the importance of agents. In addition, GAComm 

incorporates a graph neural network (GNN) to compile 

messages. However, a neural network can also learn 

implicitly about the importance of messages. Bi-LSTM 

layers are used in another method called BiCNet to link 

policy and value functions. Agents can exchange messages 

and learn from each other's memory states in a collaborative 

multi-agent reinforcement learning (Comm-MARL) system. 

However, such systems need to address practical constraints 

such as costly communication and stochastic environments.

 To minimize communication overhead and contention, 

SchedNet [1, 35] selects to send messages to a shared 

communication channel. TMC [35] disallows agents from 

broadcasting similar messages and stores received messages 

in a buffer to compensate for missing messages.  

Gated-ACML [36 , 37] introduces a two-step approach 

that aggressively removes messages. Similar to ATOC and 

IC3Net, the initial phase is studying a gate mechanism to 

determine whether to send messages or not. The second 

phase involves the assumption of a centralized message 

coordinator by Gated-ACML, who organizes the messages 

and distributes them to each agent. This strategy lessens 

communication overhead, as each agent theoretically only 

needs to communicate with the coordinator. 

2.1 MARL system 

Two methods [37] for coping with communication 

constraints in ETCNet use MARL. and variable-length 

coding. ETCNet computes an upper limit on the likelihood 

that agents can communicate at each time step and optimizes 

policies accordingly. In contrast, variable-length coding 
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permits agents to control the quantity of bits they send out at 

any one moment. While both methods are effective in 

enhancing the performance of MARL agents, ETCNet is 

computationally more demanding than variable-length 

coding. 

3. Proposed dimensions 

We aim to provide a systematic and structured approach 

to design Comm-MARL. We suggest that there are nine 

dimensions that may be used to describe Comm-MARL 

systems. Many aspects and the target issues are shown in 

Table 1. In the following subsections, recent works in 

Comm-MARL have been summarized and classified based 

on the proposed dimensions. 

Table 1: Dimensions and their targeted problems 

Dimensions Targeted problems 

Communication type Which type of agents to communicate with? 

Communication policy When and how to build communication 
links among agents? 

Communicated messages Which piece of information to share? 

Message combination How to combine received messages? 

Inner integration How to integrate combined messages into 

learning models? 

Communication 

constraints 

How to fulfill realistic requirements? 

Communication learning How to train and improve communication? 

Training schemes How to utilize collected experience from 
agents? 

Controlled goals What kind of behaviors are desired to 

emerge with communication 

3.1 Communicates Type 

In Comm-MARL systems, the communicate type 

dimension refers to the classification of agents based on 

whether they communicate with each other directly or not. In 

the literature, this dimension has been classified into 

different categories. 

Table 2: Category of communication type  

Types Sub types Methods 

Agents in 
the MAS 

Nearby 
AGENTS 

DGN[38];MAG-NET-SA-GS-MG[46]; 
AGENT-ENTITY GRAPH[29]; LSC[45]; 

NEURCOMM[32];IP[33];FLOWCOMM[14];
GAXNET[44] 

 Other 
agents 

DIAL[11];RIAL[11];COMMNET[12];BICNE
T[36];TARMAC[20];MADDPGM[47];IC3N

ET[24];SCHEDNET[25];DCCMD[48];VBC[
39];DIFFDISCRETE[49];12C[28];IS[34];ET

CNET[27];VARIABLE LENGTH 

CODING[43]; TMC [40] 

PROXY ==== MAGIC[13];GA-COMM[22];MS-MARL-
GCM[50]; IMAC[21]; ATOC[23]; MD-

MADDPG[37]; GATED-ACML[26]; 

HAMMER[51]; 

3.2 Agents in MAS 

In this category, some agents may not be able to 

communicate with all other agents in the MAS. Therefore, two 

types of agents are distinguished. Type 1 agent can 

communicate with all other agents in the MAS and Type 2 

agents can only communicate with a subset of agents in the 

MAS. In some MARL systems, agents can only 

communicate with nearby agents, which can be defined in 

different ways such as agents that may be observed or 

nearby agents. 

3.2.1 Neighboring agents on a graph: 

In this communication type, agents are connected to each 

other on a graph and they can only communicate with their 

neighboring agents. This can be defined in a few ways, such 

as: 

 Observable agents: Agents that can observe each other 

 Agents within a certain distance: Agents that are within 

a certain distance of each other 

 Neighboring agents: Agents that are connected to each 

other on a graph 

For instance, GAXNet [38] allows agents that are 

observable to each other to communicate. DGN [39] limits 

communication to the three closest neighbors of each agent. 

The agent-entity graph [40] measures the distance between 

agents and enables communication between any two agents 

that are close to one another. Agents within a cluster radius 

can choose whether to become leader agents using LSC [41]. 

Both the networked multi-agent systems NeurComm [42] 

and IP [43] employ an established graph structure among 

their agents. As a result, communication between agents is 

limited to those that are related to one another on the graph. 

Similar to this, MAGNet-SA-GS-MG [44] likewise limits 

agent communication by using a pre-trained graph. 

3.2.2 Other (Learning) Agents: 

In certain MARL setups, communication between agents 

can occur without any proximity constraints. An example is 

IC3Net [45], where learning agents can communicate with 

their opponents, even if they have fixed policies. The results 

of experiments show that opponents eventually learn to 

communicate to avoid exploitation. Another way to facilitate 

communication in MARL is to use a proxy agent. This agent 

acts as a central point for communication among other 

agents but has no direct impact on the environment. Its role 

is to coordinate and transform messages between agents. 

Various types of proxies can be used to facilitate 

communication among agents in a Comm-MARL system 

[44-46]. A scheduler that collects encoded data from all 

agents and communicates with each one individually, a 

message coordinator that allows agents to decide whether to 

communicate with each other, and a system that combines 

messages from agents depending on their weights. Table 2 

provides an overview of recent works on communication 

type. 

Agent 1 can communicate directly with nearby agents 3 

and 4, but also with agent 2 via a central proxy. The proxy 

coordinates and transforms messages to allow agent 1 and 

agent 2 to communicate with each other, despite not being 

nearby agents.  
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3.3 Communication policy 

A communication policy is a set of rules that govern how 

agents communicate with each other. Predefined 

communication policies are fixed and do not change during 

learning. For example, a predefined communication policy 

might allow all agents to communicate with each other, or it 

might only allow agents to communicate with their 

neighbors. Learned communication policies are updated 

during learning. For instance, an agent might learn to 

communicate with other agents that have been helpful in the 

past, or it might learn to communicate with agents that have 

similar goals. There are four main categories of 

communication policies: [46-49, 63] 

Full communication: All agents are permitted to speak with 

one another. 

Partial structure: Agents can communicate with a subset of 

other agents, based on a predefined rule. 

Individual control: Each agent learns its own 

communication policy. 

Global control: A central agent learns a communication 

policy for all agents. 

Full communication is the simplest communication 

policy. It is permitted for all agents to converse with one 

another regardless of their location or goals. This policy is 

easy to implement, but it can be inefficient if agents are not 

communicating with the agents that are most relevant to 

them. Partial structure is a more complex communication 

policy. Only a selected group of other agents are permitted to 

communicate based on a predefined rule. This rule can be 

based on the agents' location, their goals or any other 

relevant factor. Partial structure can improve efficiency by 

reducing the number of unnecessary messages. 

Individual control is a more flexible communication 

policy. Each agent learns its own communication policy. This 

policy can be more efficient than partial structure because 

agents can learn to communicate with the agents that are most 

relevant to them. However, individual control can be more 

difficult to implement because each agent needs to learn its 

own policy. Global control is the most complex 

communication policy. A central agent learns a 

communication policy for all agents. This policy can be the 

most efficient because the central agent can take into account 

the communication needs of all agents. However, global 

control can be the most difficult to implement because the 

central agent needs to possess a thorough awareness of the 

environment and the objectives of the agents. 

 

Fig. 1: Communication standards with agents: [46-49, 63] 

The choice of communication policy depends on the 

specific application. If efficiency is the most important 

factor, then full communication or partial structure might be 

the best choice. If flexibility is the most important factor, 

then individual control might be the best choice. If accuracy 

is the main significant factor, then global control might be 

the best choice.  

3.4 Communicated Messages  

Once agents have established communication links, they 

need to decide what information to share. Partial 

observability means that each agent only has access to a 

limited view of the environment, so sharing local 

observations can be helpful for coordination. Agents can 

also share historical experiences, desired courses of action, 

or upcoming plans to produce more enlightening 

communications. 

Recent research in this field varies depending on whether 

further information is simulated and encoded and can be 

classified into two categories: 

3.4.1 Non-Future-Aware Communication: 

 In this category, agents do not consider future 

information when deciding what to communicate. They only 

share local observations, historical experiences, or intended 

actions. 

3.4.2 Future-Aware Communication: 

In this category, agents consider future information when 

deciding what to communicate. They may simulate future 

outcomes, encode future plans, or use other methods to 

generate more informative messages. 

The choice of communication strategy depends on the 

specific application. If efficiency and accuracy are the most 

important factors, then non-future-aware communication 

might be the best choice.  

3.5 Message Combination [47] 

To process received messages, most existing Comm-MARL 

works typically handle them as a single entity. Message 

combination involves merging multiple received messages 

into a single message that can be used in an agent's internal 

model. In the presence of a proxy, agents typically receive a 

coordinated and combined message from the proxy, which 

takes care of the message combination process as discussed 

in the communicated messages dimension. In the absence of 

a proxy, agents need to individually determine how to 

combine multiple messages. As communicated messages 

capture the senders' interpretation of some messages may be 

more important than others depending on the situation or the 

learning process. For example, a message from an agent who 

has a lot of experience in the environment may be more 

valuable than a message from an agent who is new to the 

environment. There are a few different approaches to 

message combination. One approach is to simply average the 

values of the messages. Another approach is to use a 

weighted average, where the weights are determined by the 

senders' expertise or other factors. A third approach is to use 
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a more complex algorithm, such as a neural network to 

combine the messages. The choice of message combination 

approach depends on the specific application. If efficiency is 

a highly valued factor, then a simple approach, such as: 

averaging might be the best choice. If accuracy is the most 

important factor, then a more complex approach, such as: 

using a neural network might be the best choice. There are 

three [48-49] main approaches to message combination: 

concatenation, equal weighting, and unequal weighting. 

Their discussion is presented below: 

3.5.1 Concatenation: 

In this approach, the messages are simply concatenated 

together. This means that no preference is introduced and all 

messages are treated equally. Concatenation can be a good 

approach if the messages are relatively short and if it is 

important to preserve all of the information in the messages. 

3.5.2 Equal Weighting: 

In this approach, the messages are weighted equally. This 

means that each message is given the same weight when it is 

combined with the other messages. Equal weighting can be a 

good approach if the messages are all of similar quality and 

if it is important to keep the message combination process 

simple. 

3.5.3 Unequal Weighting: 

In this approach, the messages are weighted unequally. 

This means that some messages are given more weight than 

others. Unequal weighting can be a good approach if the 

messages are of different quality. The weighting of the data 

may be done in a variety of ways. One of the methods is 

messages unequally. One common method is to use an 

attention mechanism. Attention mechanisms assign weights 

to the messages based on their relevance to the current task. 

Another common method is to use a neural network. Neural 

networks can learn to weight the messages automatically, 

based on the data. 

The choice of message combination approach depends on 

the specific application. If efficiency is the most important 

factor, then concatenation might be the best choice. If 

accuracy is the most important factor, then unequal 

weighting might be the best choice. 

3.6 Inner Integration 

For this, the literature generally approaches the concept 

of inner integration. Messages are typically seen as 

additional observations, which can be fed as an extra input 

either to a value function, a policy function, or both. 

3.6.1 Policy-level: 

To integrate messages into a policy model, agents can 

use the received messages to choose the next action. This 

way, agents can exploit information from other agents and 

act in a coordinated manner rather than independently. There 

are various methods for learning the policy model, such as 

policy gradient with REINFORCE, which gains reward in  

episodes and trains the model at the end of each episode, and 

actor-critic methods, which use a Q-function as a critic 

model to guide the learning of a policy network as an actor 

model. 

3.6.2 Value-level: 

Messages are considered as input to a value function, 

also known as an action-value function, in this category. 

DQN-like methods are commonly used in most of the works 

in this category. 

3.6.3 Policy-level & Value-level 

Integrating messages into both a policy and value model 

typically involves applying actor-critic techniques. These 

approaches use the messages that have been sent as 

additional inputs for the actor and critic models, 

respectively. As an alternative, the messages might be used 

in conjunction with nearby observations to produce fresh 

internal states that could then be communicated to both the 

actor and critic models. 

The choice of the inner integration approach depends on 

the specific application. If efficiency is the most important 

factor, then policy-level integration might be the best choice. 

If the highest priority is accuracy, then integrating messages 

at the policy and value levels could be the optimal option. 

3.7 Communication Constraints 

To address realistic challenges such as the price of 

communication and noisy environments, systems Comm-

MARL need to consider communication constraints. Recent 

work in this domain can be classified into three types: 

3.7.1 Limited communication rounds: 

In this type of constraint, agents are only allowed to 

communicate a limited number of times. This can be a 

realistic constraint in applications where communication is 

expensive such as in satellite communications. 

3.7.2 Noisy communication: 

In this type of constraint, messages can be corrupted or 

lost. This can be a realistic constraint in applications where 

communication is unreliable such as: in wireless 

communications. 

3.7.3 Partial observability: 

In this type of constraint, agents do not have access to all 

environmental information. This can be a realistic constraint 

in applications where it is difficult or impossible at the end 

of each episode, and obtain complete information about both 

the model and actor-critic techniques that employ a Q-

function. 

The choice of communication constraint depends on the 

specific application. If efficiency is the highly valued factor, 

then limited communication rounds might be the best choice. 

If accuracy is the most important factor, then noisy 

communication or partial observability might be the best 

choice. 
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3.8 Limited Bandwidth 

Communication constraints refer to the limitations of 

communication bandwidth and capacity, which can affect 

the performance of Comm-MARL systems in realistic 

settings. Recent work [40-49, 57] in this domain can be 

classified into three types: 

The first type assumes that because of the restricted 

communication bandwidth and capacity, early works try to 

send brief messages to cut down on communication 

overhead. DIAL [46] and RIAL [45] propose binary and 

real-value messages, respectively, to communicate between 

two agents and alleviate limited channel capacity. SchedNet 

[47] selects a subset of agents to broadcast their messages 

according to their importance. With reduced communication 

cost than SchedNet, VBC [48] and TMC [49] use specified 

criteria to filter out extraneous traffic. A probabilistic gate 

unit to block messages and a message coordinator are 

learned via gated ACML, which requires adjusting the gate 

through learning compared to handcrafted thresholds. These 

methods all attempt to reduce communication overhead in 

order to enhance Comm-MARL systems' performance in 

low bandwidth settings. 

3.8.1 Noisy Channel: 

In this categorization, ambient noise may interfere with 

how signals are sent between agents. The DIAL method, 

which works with Gaussian noise, shows how adding noise 

to real-valued signals may change their distribution. 

Contrarily, discrete attempts to back-propagate derivatives 

using discretized real-valued messages while addressing a 

noisy channel. Gradients may be obtained by using the 

suggested approach, which mathematically equates 

transmitting real-value signals to the discretized signal with 

additive noise [50-52]. 

3.8.2 Shared Medium: 

This division of disagreement deals with situations where 

messages are transmitted through a single medium. MD-

MADDPG solves this problem by allowing agents to access 

shared memory space sequentially to avoid contention. 

SchedNet selects agents who place a high priority on 

spreading their message, reducing the likelihood of 

contention. 

3.8.3 Communication Learning: 

Communication Learning deals with updating and 

adjusting a communication protocol through acquiring 

knowledge about a communication strategy and message. 

The education process can utilize defined feedback in the 

form of rewards, which can be enhanced in addition to 

learning the environment policy by a reinforcement learning 

process. To give richer and denser feedback, gradients can 

also be back-propagated from one agent to another. 

However, if agents learn discrete sending behaviors, this 

approach may be impractical because it necessitates 

differential messages and communication behaviors. On the 

basis of how communication feedback is used, recent studies 

in this dimension are grouped. 

3.8.4 Reinforced: 

In this category, the communication protocol is trained 

using reinforcement learning methods. RIAL and HAMMER 

concentrate on teaching the message's content in its entirety 

without considering whether to communicate. Other works 

consider both the learning of message content and the 

decision of whether to communicate. In addition, most 

works employ a centralized critic to provide feedback to all 

agents, while some works use a decentralized critic to 

provide feedback to individual agents. 

3.8.5 Policy Gradient: 

In this category, the communication policy is learned 

using policy gradient methods. This approach is more 

efficient than reinforcement learning but it requires the 

communication policy to be differentiable. 

3.8.6 Backpropagation: 

In this category, gradients are back-propagated through 

the communication policy. This approach is more accurate 

than policy gradient, but it requires the communication 

policy to be differentiable and the messages to be 

discretized. 

3.9 Imitation Learning 

In this category, an expert communication policy is 

observed and imitated by the agents. This approach is simple 

to implement but it requires an expert communication policy 

to be available. The choice of communication learning 

approach depends on the specific application. If efficiency is 

the most important factor, then reinforced learning might be 

the best choice. If accuracy is the most important factor, then 

back-propagation or imitation learning might be the best 

choice. 

4. Training Scheme  

It deals with how to leverage the accumulated experience 

from the agents in a Comm-MARL system including 

observations, actions, incentives, and messages. One 

approach [53] is to train each agent's model in a 

decentralized manner using its own experience. Another 

approach [53-55] is to train the agents centrally resulting in a 

single model to control. However, both have their 

drawbacks. Decentralized learning needs to handle a non -

non-non-stationary environment due to agents that change 

and adapt. On the other hand, centralized learning faces a 

stationary environment while also struggling with a sizable 

common policy area that can be challenging to search. 

A common approach [43-47, 55, 60-63] that balances the 

benefits of centralized and decentralized training is the 

CTDE technique, where agents get centralized training and 

decentralized execution and learn their local policies while 

being guided by central information. Recent works [12, 

13]on training schemes can be classified based on how 

agents' experiences are utilized. 

(a) Centralized Learning: Recent works in this area do not 

assume the presence of a central controller during the 



R. Khan et al. / The Nucleus 60, No. 2 (2023) 174-184 

 181 

execution of tasks, where experiences are collected into a 

central unit for learning to control all agents. 

(b) Decentralized Learning: Each agent in this category 

develops their own policy independently. This approach is 

simple to implement, but it can be slow to converge. 

(c) Centralized-Decentralized Learning: In this category, 

agents first learn a centralized policy, which is then 

decomposed into decentralized policies. This approach can 

be more efficient than decentralized learning, but it can be 

more difficult to implement. 

(d) Federated Learning: In this category, agents learn their 

own policies locally and then exchange information with 

each other. This approach can be more efficient than 

centralized learning, but it can be more difficult to 

implement. The choice of training scheme depends on the 

specific application. If efficiency is the highly valued factor, 

then decentralized learning might be the best choice. If 

accuracy is the most important factor, then centralized 

learning or federated learning might be the best choice.  

4.1 Decentralized Learning 

 Experiences are collected on an individual basis and 

agents are trained independently in this category. While this 

approach is straightforward to implement, it may converge 

slowly. 

4.2 CTDE 

We can further classify recent works in CTDE based on 

how they utilize experiences from all agents for 

optimization. Parameter sharing is also crucial for improving 

data efficiency by allowing a single set of parameters and 

information might be exchanged across agents as a Q-

function or a policy. Agents may nevertheless behave 

differently since they get unique observations at each time 

step. These insights allow us to distinguish between the most 

recent researches in the following groupings [56-59]. 

4.3 Personalized (Policy) Parameters  

Local policies in this scenario possess distinct sets of 

parameters and a central unit is responsible for accumulating 

all experiences to offer universal guidance and information, 

including gradients. To train the complete system, we can 

utilize techniques like the policy gradient actor-critic-based 

techniques or an algorithm (like REINFORCE). 

4.4 Parameter Sharing 

Typically, in this situation, DQN-like algorithms, actor-

critic-based techniques, and policy gradients with 

REINFORCE are used. A local Q-function will learn to take 

into account all experiences if a DQN-like method is used or 

a separate global Q-function will be used to direct the 

learning. A shared actor (i.e., policy model) is trained to 

include all observation-action pairings when an actor-critic-

based technique is utilized and it gets gradient instruction 

from a central critic [12]. Now here is the summarization of 

the whole discussion in a comparison table named Table 3. 

In Table 3 we have discussed all 9 dimensions of the 

communication used in MARL system and what are their 

further methods of implementation  

Table 3: Comparative Analysis of Dimensions of Communication in Multi-
Agent Reinforcement Learning 

Dimension Description Examples 

Communication 

type 

The way in which 

agents 

communicate with 
each other. direct 

or indirect. 

*Direct communication: Agents 

send and receive messages. 

*Indirect communication: Agents 

learn to coordinate their actions 

without explicitly communicating. 

Communication 
policy 

The rules that 
govern how agents 

communicate. 

*Full communication  

*Partial structure  

*Individual control 

*Global Control 

Communicated 

messages 

The information 

that agents share 

with each other. 

*Non-Future aware 

communication. 

*Future aware communication. 

Message 
combination 

The way in which 
agents combine the 

messages they 

receive. 

*Concatenation: Agents 
concatenate the messages they 

receive into a single message.  

*Equal weighing: The messages 

are weighted equally. 

*Unequal message weighing: The 

messages are not weighted equally.  

Inner integration The way in which 
agents incorporate 

the messages they 

receive into their 

decision-making 

process. 

*Policy level: To integrate 
messages into a policy model, 

agents can use the received 

messages to choose the next action. 

*Value level: Messages are 

considered as input to a value 

function. 

*Policy-level & Value-level 

Integrating messages into both a 

policy and value model typically 

involves applying actor-critic 

techniques. 

Communication 

constraints 

The limitations on 

how agents can 

communicate. 

*Limited communication rounds: 

In this type of constraint, agents are 

only allowed to communicate a 

limited number of times. * Noisy 

communication: In this type of 
constraint, messages can be 

corrupted or lost. * Partial 

observability: In this type of 

constraint, Agents do not have 

access to all environmental 

information.  

Communication 

learning 

The way in which 

agents learn to 

communicate. 

*Supervised learning: Agents are 

given a reward for sending 

messages that lead to good 

outcomes.  

*Reinforcement learning: Agents 

learn to communicate by trial and 

error. 

Training schemes The way in which 

agents are trained 

to communicate. 

*Independent training: Agents are 

trained separately.  

*Cooperative training: Agents are 

trained together. 

Controlled goals The goals that 
agents are trying to 

achieve through 

communication. 

*Coordination: Agents are trying 
to coordinate their actions to 

achieve a common goal. 

*Competition: Agents are trying to 

compete with each other to achieve 

a better outcome. 

4.5 Concurrent 

Agents are allowed to make a backup of all experiences 

by observing the behavior and observations of other agents. 
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Compared to decentralized learning, this is different. In this 

case, while getting guidance including global information, 

each local policy maintains a unique set of parameters. 

Actor-critic-based methods are frequently employed in 

concurrent CTDE, where each agent has its central critic to 

guide its local policy. 

4.6 Controlled Goal 

It is expected to achieve its aim by defining a reward 

configuration. The behavior correlates to different reward 

setups and learning may be divided into three types: 

cooperative, competitive, and mixed. It is worth mentioning 

that some studies have examined multiple scenarios to 

demonstrate their flexibility and scalability. Recent Research 

[13] in this area is divided into categories according to the 

behavior that is intended to emerge among learning agents 

with varying reward configurations. 

4.7 Cooperative 

In a cooperative situation, actors are compelled to 

interact in order to improve performance as a whole of the 

team. A team of agents may receive a collective reward that 

does not consider the contribution of each agent separately. 

As an alternative, agents might get regional incentives that 

are created to be dependent on the collective performance of 

their teammates, penalize collisions, or share rewards with 

neighbors to foster cooperation [14]. 

4.8 Competitive 

StarCraft is a prevalent testing environment that involves 

multiple competitive teams. However, most studies only 

control one team and therefore, are not of interest to us. 

Based on our observations, only one study, IC3Net has 

examined samples having antagonistic benefits. IC3Net 

reveals that only when it is necessary, competing agents 

learn to communicate.  

4.9 Mixed 

In a mixed scenario, agents can exhibit either cooperative 

or competitive behavior, depending on the circumstances. 

For instance, agents may collaborate to achieve a shared 

objective but then compete for rewards after the objective is 

accomplished. 

5. Conclusion 

We have identified nine dimensions for analyzing and 

comparing various CommMARL systems, which researchers 

can utilize to develop their Comm-MARL system. Despite 

the success in this field, there are still some issues that 

require further examination and resolution. Most recent 

studies on Comm-MARL employ communication that is 

facilitated by the Sender-Receiver or Sender-Proxy-Receiver 

paradigm.  This approach is helpful for learning since 

gradients may easily be back propagated from 

communicatees. Agents can, however, also ask their 

counterparts for specific data. Take Xuan et al. as an 

example. [12, 13] outline that agents can ask questions or 

sync their knowledge. 

Secondly, as discussed, communication limitations are 

crucial for scenarios that necessitate low communication 

costs and reliable communication, necessitating further 

investigation and integration with practical use cases. 

Thirdly, assessing the impact of a communication 

protocol is tough since it is hard to tell whether performance 

improvements are due to messages sent or environmental 

events. We have found two methods for learning 

communication in the dimension of communication learning 

protocol: reinforcement and differential. However, 

reinforcement learning requires human input to design 

suitable feedback for learning, while differential learning 

may face difficulties in determining how each agent 

contributes to a shared reward. Thus, it is necessary to 

develop more advanced and efficient methods for learning 

communication protocols. 

Moreover, parameter sharing has become popular in 

recent works but it assumes homogeneous learning models. 

Developing Comm-MARL systems for heterogeneous 

agents is an area that needs further exploration. We are 

optimistic about the future of Comm-MARL. With the 

continued advancement of artificial intelligence, we can 

anticipate the development of more complex and 

sophisticated Comm-MARL systems that can tackle more 

challenging problems.                                                                                                                    
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