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A B S T R A C T 

The position of the Sun as seen by an observer on the Earth’s surface and the position and velocity vectors of the Earth revolving in an elliptical orbit 

around the Sun can be calculated using several computational approaches. These approaches include (but are not limited to) the use of an analytical 

approach; a numerical approach, and the use of a Solar Position Algorithm (PSA). In the analytical methodology, the Earth’s momentum equation is 

transformed to eliminate its time dependence, and the equation is solved analytically. Whereas, using the numerical approach, the dimensionless momentum 
equation of the revolving Earth is written in the polar coordinate system (r, θ) and solved numerically. The solar position algorithm known as PSA 

(Plataforma Solar de Almeria, abbreviated from its Spanish origin: https://www.psa.es), is a numerical algorithm that uses several empirical relations to 

calculate the solar declination and the ecliptic longitude angles, etc. The algorithm uses Cartesian coordinate system to calculate the dimensionless 
coordinates of the pole star (Polaris) and its declination angle to calculate the position vector of an observer that rotates with the Earth. This coordinate 

system is referred to as a new Cartesian coordinate system whose origin is located at the center of the Earth. The solar elevation angle and azimuth angle 

are obtained by performing a set of rotations of this new Cartesian coordinate system. In this article, we have used basic physical principles (analytical 
approach) to obtain the main parameters of the Sun’s trajectory and position, at certain time in the sky. The methodology presented here can easily be used 

by professionals and engineers working in the area of solar/alternate energy, as well as for the design of intelligent/green buildings/cities for a sustainable 

environment. 
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1. Introduction 

The variation in the position of the Sun in the sky over an 

observer is a natural phenomenon that has intrigued 

humankind forever. The position of the Sun has been 

correlated with the occurrence of natural phenomena 

(volcanic activity, storm cycles, and earthquakes). The 

motion of the Sun has also been considered as a measure of 

time, or as a phenomenon that governs the agricultural 

cycles and diseases. Since the 20
th

 century, the accurate 

determination of the Sun’s position has been an important 

subject of study for engineers. Due to the increasing price of 

petroleum, the effect of greenhouse gases on climate change 

and global warming, and the increasing number of internal 

combustion engines in big cities, it is necessary that 

engineers develop alternative energy sources. Engineers 

need to efficiently extract energy from renewable and free 

sources, such as the Sun. Energy engineers need to design 

efficient solar furnaces, solar steam generators, solar water 

heaters, solar cells, etc. If civil engineers efficiently use solar 

energy, they may design reliable intelligent buildings and 

sustainable environments. In the near future, the task of the 

engineers will be very important. However, sometimes they 

do not have enough background to understand the 

mathematical notations that the physicists and astronomers 

use to calculate the Sun’s position. In view of the above, we 

have made a literature review and explained the 

methodology, here. 

The determination of the Sun’s position in the sky by 

using vector analysis techniques has been previously 

reported by [1] and [2]. A simple parametric model, that 

describes the basic principles of the visible Sun’s path on the 

celestial sphere, has been presented by [3]. A review of the 

Sun’s position algorithms that were published in the solar 

literature is presented by [4]. The Sun position algorithms are 

sophisticated schemes, that compute the position of the Sun 

in the ecliptic, celestial, and horizontal coordinates, see [5]. 

Very recently, a review of the Sun position algorithms has 

been presented in [6]. On the internet sites, it is also possible 

to find and execute computer codes to calculate the position 

of the Sun in the sky, for instance [7]. The purpose of this 

paper is to present a self-contained material suitable for 

energy and civil engineers/researchers to determine the solar 

position in the sky.  

The paper is organized as follows. In section 2, the 

Earth’s orbit equation is presented. In section 3, the 

methodology to obtain the Cartesian coordinates of the star 

Polaris and the calculation of the declination angle, are 

presented. In section 4, a Cartesian coordinate system, 

whose origin is located at the center of the Earth, is 

introduced to define both the position vector of an observer 

and the position vector of the Sun. Employing a set of 

rotations, the solar elevation angle and the solar azimuth 

angle measured from the north are calculated. Discussion on 

results and Conclusions are presented in sections 5 and 6, 

respectively. 

2. Earth’s orbit equation 

In the mathematical model of the Earth’s orbit equation, 

it is assumed that the Earth is being attracted to a fixed 

attracting focus (the Sun). The motion is confined to the 

ecliptic plane, which is described by the radius vector (from 

the Sun to the Earth) and the velocity vector of the Earth. 

Using a polar coordinate system r - θ, where r (the radial 

coordinate) is measured from a fixed focus (the Sun) and θ 

(the angular coordinate) is measured from a fixed reference 

line (the line traced from the Sun to the Earth at the 

Perihelion position), see Fig. 1. 
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Fig. 1. Polar r - θ coordinate system. The letters S and E correspond to the 
Sun and the Earth positions, respectively. a and c represent the 

major axis and the focus of the elliptical trajectory of the Earth 

around the Sun, respectively. The Earth’s Perihelion position 
(θ=0o) and the Earth’s Aphelion position (θ=180o) are also shown. 

The radial and angular components of the momentum 

equation of the Earth (in terms of force and acceleration) are 

written as (in the model it is assumed that the only force 

acting on the Earth is in the negative radial direction). 

Radial component 

If we assume that the motion of the Earth relative to the 

Sun, is the same as if the Sun is fixed and the mass of the 

Earth is replaced by the reduced mass M′E , which is defined 

as 

  
   

    

     
          (1) 

where MS is the mass of the Sun and ME is the mass of 

the Earth and the gravitational force in the radial direction 

(attracting force) is balanced by the centripetal force, we get 

(G is the gravitational constant): 

 ̈    ̇     
            

                 (2) 

or 

 ̈    ̇    
 

                  (3) 

Where μ is the gravitational coefficient (positive constant) 

given as: μ = G (ME +MS). Please note dot (.) represents a 

time derivative and r and θ are shown in Fig.1. 

Angular component 

Considering that angular momentum is zero, the angular 

momentum component per unit mass h, is independent of 

time and is defined as: 

      ̇      (4a) 

or (squaring both sides and rearranging) 

 ̇   
  

         (4b) 

The principle of conservation of angular momentum 

states that the moment of the total external force applied to 

the Earth is equal to the time rate of change of the angular 

momentum of the Earth about the Sun. If the external 

moment is equal to zero, the angular momentum h must be a 

constant. Substituting Eq. (4b) into Eq. (3), we obtain  

 ̈   
  

    
 

                  (5) 

or 

   

    
 

   
  

 
                   (6) 

2.1 Solution of the Earth’s orbit equation: A numerical 

approach 

Using the non-dimensional variables r* = r/a (where a is 

the semi-major axis of the Earth’s elliptical orbit) and t* = 

tμ/(ah), the dimensionless radial component of the 

momentum equation is written as 

    

      
  

        
  

                             (7) 

For the numerical solution of Eq. (7), we have considered 

the following values (which are available in the literature) of 

the Earth trajectory: (i) the semi-major axis a = 150 × 10
9
 m, 

(ii) the angular momentum per unit mass h = 4,452,990,073 

km
2
/s [8] and (iii) the gravitational coefficient μ is obtained 

by employing the values of G = 6.673x10
−11

 m
3
/(kg s

2
), ME = 

5.972 x 10
24

 kg and MS = 2 x 10
30

 kg, as μ = G (ME +MS) = 

132,774,392,455,423,200,000.0 m
3 
/
 
s

2
. 

By substituting these values in Eq. (7), we have 

    

     
           

    
          

                      (8) 

This second-order ordinary differential equation is solved 

by using a Runge-Kutta-Nystrom technique (D02LAF-

NAG) and taking into account the following initial 

conditions: (i) at t*=0 the Earth’s radial velocity is zero, that 

is, dr*/dt* =  ̇* = 0 and (ii) at t*=0, the Earth is at the 

Perihelion position i.e.  = 0
o
. The numerical solution is 

performed along the whole year (365 days), by considering 

525,600 time steps, which corresponds to a dimensionless 

time increment t*=1.19023 x 10
−5

, which is equivalent to a 

dimensional time increment t=60s. By solving Eq. (8), we 

obtain, as a function of time t*, the dimensionless radial 

position (r*) and the dimensionless radial component of the 

velocity vector (dr*/dt* =  ̇*). The dimensional tangential 

velocity of the Earth (vt = r ̇), which is called the orbital 

speed, is obtained from Eq. (4a), which says vt = r ̇ = h/r. 

The angle  around the Sun is calculated from the 

equation of an ellipse, which in polar coordinates seems as: 

  
       

       
 

 

       
                      (9) 

Where,  is the eccentricity of the Earth’s orbit, currently 

 ≈ 0.0167005 and l is the semi-latus rectum defined as l = a 

(1−
2
) = 149,958,163,991.09 m. The dimensionless version 

of Eq. (9) is 

   
      

       
 

  

       
                       (10) 

where l* = (1−
2
) = 0.9997210932. Hence the angle  is 

obtained by rearranging the above equation, as: 

        
     

   
             (11) 
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From Eq. (11) it is clear that when =0
o
 (defined as the 

Perihelion position, around January 3
rd

), the Earth is closest 

to the Sun, at a dimensional radial distance r equal to rp, as: 

                    km   (12) 

while when =180
o
 (defined as the Aphelion position, 

around July 4
th

), the Earth is farthest from the Sun, at a 

dimensional radial distance, r equal to rA, as: 

                    km  (13) 

Then, the dimensionless polar coordinates at the 

Perihelion r*P and Aphelion r*A positions (from Eq. 10) are 

  
  = (1−) = 0.9833 and   

 = (1+) = 1.0167, respectively. 

From the numerical solution of Eq. (8), we obtain 

   
 =0.9833 (when =0

o
),    

 =1.016699 (when =180
o
) and 

  
 =0.999721, where, the subscript n refers to the use of the 

numerical approach. 

2.2 Solution of the Earth’s orbit equation: An analytical 

approach 

If the above equations are reformulated to eliminate time 

dependence, the time derivatives of the radial distance, r are 

eliminated, and after applying considerable mathematics (for 

further details of the procedure please contact the 

corresponding author) and the use of available data for μ, h 

and a, the dimensionless Earth’s elliptical orbit equation is 

obtained as: 

   
 

 
 

  0.99972109732795145 / (1+0.016700379398341621     ) (14) 

If Kepler’s second law of planetary motion that states 

“the radius vector from planet to Sun, sweeps equal areas in 

equal times as the planet orbits the Sun”, we obtain an 

expression that relates the Earth’s angle  around the Sun to 

the elapsed time since  = 0 radians (that is, angle from the 

Earth’s perihelion position). If the small element of the area 

in the elliptical Earth’s orbit consists of a small isosceles 

triangle whose sides have length r and whose base length is 

rd. The small area is given as: 

   
 

 
               (15) 

In a short time dt the Earth has the constant areal 

velocity, given by: 

  

  
 

 

 
    

  
          (16) 

After applying a considerable mathematics, using Eq. (3) 

and the principle of conservation of angular momentum, we 

obtain: 

   
 

 
[

        
 

          
]                (17) 

and,  

 

 
[

        
 

          
]    

 

 
                 (18) 

which can be rewritten (after performing the integration 

over time) as: 

  
        

 

 
 ∫

  

          

  

 
                     (19) 

The dimensional analytical solution of Eq. (19) is 

  
        

 

 
 

 

√    
      

√    

   
     

 

 
   

     

       
  (20) 

where the dimensional time, t, is in seconds. In the 

derivation of the above equations, the values for 

h=4,456,990,073,000,000 m
2
/s and a=149,597,885,651 m, 

have been used. The dimensionless expression for the time 

t* is given as: 

    
 

  
 

        
 

 
 

 

√    
      

√    

   
     

 

 
   

     

       
   (21) 

From Eqs. (14) and (21), the values of r* and t* 

respectively, are calculated for a set of  angles in the 

interval       . 

2.3 Solar position algorithm (PSA) 

The Sun’s position algorithm, namely, “Plataforma Solar 

de Almeria” (PSA algorithm - abbreviated from its Spanish 

origin: https://www.psa.es) developed by [4] is a numerical 

algorithm used to calculate, as a function of time (specified 

by the Julian day, the calendar date and the universal time), 

the Sun position parameters, such as the ecliptic longitude 

angle  ̂ (which is related with the polar coordinate, , see the 

previous sections) and the declination angle, β, among 

others. Following [4] the difference n, between the current 

Julian day (jd) and Julian day 2,451,545 (which corresponds 

to the day starting at 12:00 UT on January 1, 2000) is given 

by: 

                         (22) 

Where, the current Julian day is obtained from: 

   
                       

 
  

                       

  
  

(
                    

     
)   

              
  ̂  

  
                     (23) 

Where, the parameter h ̂ur includes the hour of the day 

(hour) in Universal Time and in decimal format (that is, the 

minutes and seconds as a fraction of an hour are also 

included), then 

  ̂        [        
       

  
]              (24) 

And, jm1412 = (month-14)/12. All divisions except the 

last one are integer divisions, see [4]. The ecliptic 

coordinates (the coordinates evaluated on the ecliptic plane) 

are computed for the required Julian day. 
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3. Location of the star Polaris (North Star) and the 

declination angle 

To calculate the position of the Sun in the sky of an 

observer, we direct the Earth’s rotation axis to the star 

Polaris. The coordinates of the North star are defined in a 

Cartesian coordinate system whose origin is located at the 

center of the Earth’s elliptical orbit and whose plane x1-x2 

defines the ecliptic plane, see Fig. 2. Where the subscript E, 

refers to the Earth; N to the North Star and S refers to the 

position of Sun. 

We have assumed (considering that the North Star is far 

away from the Sun-Earth system) that the angle between the 

 

Fig. 2.  Cartesian coordinate system, whose origin is located at the center 

of the Earth’s elliptical orbit. In the figure positions of the Sun, 

Earth and the North Star (Polaris) are shown. Also shown is the 

angle (66.5477o) between the position vector of Polaris and the 
ecliptic plane (plane x1−x2 of the Cartesian coordinate system). 

rotation axis of the Earth to the position vector of the North 

Star is the same as that of its position vector with the ecliptic 

plane (also see Fig. 3, below). 

 

Fig. 3. The angle , between the Earth’s rotation vector and the vector 
from the Earth to the Sun. 

The angle , between the Earth’s rotation vector     
  

and the vector from the Earth to the Sun     
  =   

  –   
 , is 

obtained as (see also Fig. 4, below). Its components are: 

     
                  

                  
     (25)  

          (
        

     
 

|    
 ||    

 |
)                       (26) 

The declination angle β (t) between the Earth’s equator 

and the vector from the Earth to the Sun     
  is given as 

(see Fig. 4, below). 

𝛽                   (27) 

 

Fig. 4. The declination angle β between the Earth’s equator and the vector 

from the Earth to the Sun     
 . 

By performing a trial and error procedure, the North Star 

is calculated to be at the dimensionless coordinates    
    

    and    
          

The third component of the position vector of the North 

Star is calculated as: 

   
       

       
   

 

                (28) 

The convergence criteria of the trial and error process are 

based on the successful evaluation of the dates at which the 

equinoxes and solstices occur.  

Fig. 5 shows the declination angle β and the ecliptic 

longitude  ̂ as functions of the days along the year. In the 

numerical solution (left panel), β is calculated from Fig. 4, 

while  is calculated from Eq. (11) (and converted to the 

ecliptic longitude  ̂). In the analytical solution (middle 

panel),  is the independent variable of Eq. (20) (and it is 

converted to the ecliptic longitude  ̂). In the Sun position 

algorithm (right panel), PSA is used to calculate  ̂. The 

calculations have been made for the year 2013. Note that for 

the three approaches, at the equinoxes, the declination angle 

β is equal to zero hence at the Earth’s equator a vertical 

zenith is reached. While at the summer and winter solstices, 

the vector     
  passes through the Tropic of Cancer (i.e. β = 

23.45
o
) and Tropic of Capricorn (i.e. β = - 23.45

o
) 

respectively.  

The dimensionless tangential velocity (orbital speed) of 

the Earth that is calculated by the numerical and analytical 

algorithms is depicted in Fig. 6. 

4. The position vector of an observer on Earth and the 

Earth’s rotation 

In order to consider the two motions of the Earth: (i) 

rotation about its axis that points towards the North star and 

(ii) the elliptical trajectory around the Sun, a new fixed 

Cartesian coordinate system (o,  ̂1,  ̂2,  ̂3) is defined, see 

Fig.7. 
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Fig. 5. The declination angle β (*) and the ecliptic longitude  ̂ (◦) as functions of time (days along the year). Left panel: Numerical solution, β is calculated 

from Fig. (4), while  is calculated from Eq. (11) (and converted to the ecliptic longitude  ̂ ). Middle panel: Analytical solution:  is the independent 

variable of Eq. (20) (and it is converted to the ecliptic longitude  ̂ ). Right panel: Sun position algorithm (PSA) is used to calculate  ̂ . 

 

Fig. 6. Dimensionless tangential velocity (orbital speed) of the Earth, v*t = (vt − vtmin)/(vtmax− vtmin) as a function of time (days along the year). The 

dimensional tangential velocity is calculated from Eq. (4), as vt = r ̇). Left panel: Numerical solution, r (which is the dimensional value of r*) is 

calculated from Eq. (8) (vtmax = 30252.76 m/s and vtmin= 29258.89 m/s). right panel: Analytical solution, r (which is the dimensional value of the 

variable r* = r/a, where a is the semi-major axis of the Earth’s elliptical orbit) is calculated from Eq. (14) (vtmax= 30299.14 m/s and vtmin= 29303.75 
m/s).

 

 

Fig.7. Cartesian coordinate system o,  ̂1,  ̂2,  ̂3 whose origin is located at the center of the Earth. Its  ̂3 axis points towards the star Polaris and its plane  ̂1 - 

 ̂2  is on the Earth’s equatorial plane. Left panel shows that the position vector of the Sun  ̂ Sun(t ) moves on the plane  ̂1 -  ̂3. Right panel shows 

the position vector of an observer  ̂obs(t ), that is located at a certain fixed latitude  on the Earth’s surface and the rotation angle . 

It may be noted that t  = 0 at  = 0
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This coordinate system has the following characteristics: (i) 

its origin is located at the center of the Earth, (ii) its plane  ̂1 

-  ̂2 is on the Earth’s equatorial plane, (iii) the position 

vector of the Sun moves on the plane  ̂1 -  ̂3, (iv) its  ̂3 axis 

points towards the star Polaris and (v) the orientation of its 

 ̂1 axis is defined together with the initial value (at t  = 0) of 

the rotation angle , we have assumed that at t  = 0,  = 0 

radian. In this new Cartesian coordinate system, we define 

two vectors, the vector  ̂obs (t ), which is the position vector 

of an observer that is located at a certain fixed latitude  on 

the Earth’s surface, and the vector  ̂   
     , which is the 

Sun’s position vector. Notice that the vector  ̂obs (t ) rotates 

at the same angular velocity as the Earth, see right panel of 

Fig. 7. In the model, it is assumed that the Earth’s rotation 

angle  is 0 ≤ ρ ≤ 2, where 2 radian, corresponds to 1 day 

(24 hours or 86400 seconds). The increment of the rotation 

angle  (which corresponds to the time step t=60 s of the 

numerical solution) is calculated as: 

Δ𝜌  
     

       
                         (29) 

The dimensionless three components of the rotating 

vector  ̂   
      referred to as the fixed Cartesian coordinate 

system are given as: 

 ̂    
             𝜌       

 ̂    
             𝜌      ̂    

                     (30) 

while the dimensionless three components of the Sun’s 

position vector  ̂    
     , which oscillates from                      

(t*) = - 23.45
o
 to  (t

*
) = 23.45

o
 on the plane  ̂1 -  ̂3, are the 

following: 

 ̂    
         𝛽      ̂    

         ̂    
         𝛽     

It may be noted that in Eq. (30), the dimensionless radius 

of the Earth is taken as equal to 1. 

5. Results and Discussion 

Some of the preliminary results obtained using these 

computational methodologies viz., the Numerical approach, 

Analytical approach, and the PSA are presented in Figures 5 

and 6. Fig. 5 shows the declination angle β and the ecliptic 

longitude  ̂ as functions of the 365 days along the year 2013 

(chosen arbitrarily to demonstrate the methodology). Both 

the numerical and analytical solutions compare well with the 

PSA which demonstrates the suitability and validity of our 

computational methodology. It may be noted in Fig. 5, that 

at the time of equinoxes, the declination angle β is equal to 

zero hence at the Earth’s equator, a vertical zenith is 

reached. While at the summer and winter solstices, the 

vector     
  passes through the Tropic of Cancer (i.e. β = 

23.45
o
) and Tropic of Capricorn (i.e. β= -23.45

o
), 

respectively.  

The tangential velocity (orbital speed) of the Earth is 

calculated by the numerical and analytical algorithms. It can 

be observed in the figure (see Fig. 6) that the dimensionless 

tangential velocity of Earth predicted by both the 

methodologies compare well, hence elaborating the success 

of our computations. 

6. Conclusions 

Diverse computational methodologies have been 

presented to calculate the trajectory of the Sun in the sky of 

an observer located on the Earth’s surface. A numerical 

algorithm and an analytical methodology have been used to 

get the parameters needed to obtain the Sun’s position in our 

sky. The location of the North Star has been calculated in a 

Cartesian coordinate system, which is a familiar coordinate 

system for engineers. Additionally, for the calculation of the 

location of the North Star, the position vector from the Earth 

to the Sun  and the declination angle as a function of time, 

were obtained for the use of the energy engineers. Standard 

transformations of the involved vectors (the position vector 

of the observer and the Sun’s position vector) have been 

obtained by performing simple rotations of the Cartesian 

coordinate system.  

The information included in this paper, although is a 

standard one, should be considered as an important source of 

reference, for solar energy engineers/civil engineers. For the 

construction of intelligent buildings for a sustainable 

environment, engineers may use this approach to accurately 

know the position of the Sun in the sky throughout the year.  
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