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A B S T R A C T 

This study explores LRS Bianchi Type-I space time filled with a perfect fluid within the framework of f(R,T) gravity, where R represents the Ricci scalar and 

T denotes the trace of the stress-energy momentum tensor. We analyze the simplest form of cosmic evolution in the context of general non-minimally coupled 
gravity models. Two specific models of f(R,T) gravity are considered. A time-dependent deceleration parameter is introduced, leading to an accelerated 

universe with an exact field solution. Additionally, we examine the kinematical and physical properties of the proposed models. 
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1. Introduction  

It was made possible by the revolution in current 

cosmological understanding because of the observational 

cosmology research during the last two decades. Currently, 

the results of observational studies imply that the universe is 

growing more quickly than before [1-10]. Recent information 

provided by the Plank collaboration [11], Baryon Oscillation 

Spectroscopic Survey (BOSS) [12] and Atacama Cosmology 

Telescope Polarimeter (ACTPol) Collaboration [13] gives 

essential experimental data supporting that universe is in 

accelerated expansion stage. Moreover, the high red shift 

supernova experiments (HRSSE)[14,15] give clear indication 

that the indirect evidence for cosmic acceleration originates 

with observations like the cosmic microwave background 

(CMB) fluctuation [4] and large scale structure (LSS) [5].  

There are two primary approaches for solving the 

challenge of cosmic acceleration. Introducing a cosmic 

component of dark energy is the first step and looks into its 

dynamic behavior and modifying general relativity is the 

second technique itself. Both strategies have unique elements 

as well as some serious theoretical issues. However, in this 

paper, our goal is to modify gravity, general relativity has seen 

various modifications in the last few decades. 

 Astrophysical measurements demonstrate that the 

universe is expanding rapidly due to an unusual form of 

energy accompanied by a strong negative pressure, known as 

dark energy, despite observational evidence. A tricky problem 

is still the character of dark energy in modern cosmology. The 

mysterious nature of dark energy is explained by modified 

theories of gravitation. Consequently, late time acceleration 

has been investigated by researchers and Dark energy can be 

investigated with modifying general relativity (GR) i.e. 

through modifying geometric part of Einstein–Hilbert action 

[16]. A highly successful strategy across them is this one to 

explore dark energy. The negative pressure created by "dark 

energy" and therefore causes the Universe to expand faster 

than the usual. Considering the Wilkinson Microwave 

Anisotropy Probe (WMAP) satellite experiment, the dark 

energy occupies 73% of the matter in the universe is non-

baryonic dark matter that fills up to 23% and regular baryonic 

(normal) matter occupy 4%. Cosmologists have postulated 

different types of dark energy candidates, including the 

cosmological constant, the Tachyon, the quintessence, the 

phantom, and others, to explain the observed data. 

It's possible that modifying the Einstein-Hilbert action is 

going to be the best way to give an explanation how the 

cosmos has evolved. Among them, f(R) suggested a theory of 

gravity by Nojiri and Odintsov [17], a theory of gravity is 

remarkable. f (R, T) modified theory of gravity was recently 

created by Harko et al. [18], where the stress-energy tensor's 

trace T and Ricci scalar R's arbitrary function R yield the 

gravitational Lagrangian. In addition, for test particles the 

equations of motion, have the metric formalism's equations 

for the gravitational field, which result from the stress-energy 

tensor's covariant divergence. 

Now, taking into account metric-dependent Lagrangian 

density, according to the following, the relevant gravity field 

equations are obtained with the Hilbert-Einstein variations 

principle. The action in light of ),( TRf theory of gravity is 

  xdgmLTRf
G

S 4),(
16

1
  










    (1) 

Here mL  this is the usual matter Lagrangian density of matter 

source, a random function of Ricci scalar R & the trace T of 

the energy–momentum tensor ijT the origin of the matter is

),( TRf , the determinant of the metric tensor ijg is g . The 

energy–momentum tensor ijT  with the Lagrangian matter is 

outlined in such a manner and ij
ijTgT   is its trace, Here, 

matter Lagrangian mL  relies only on the metric tensor 

component ijg  in place of its derivatives this is we considered 

here, Hence, we secure  
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The f(R, T) gravitation field’s equations are acquired by 

varying the action S in relation to metric tensor (gμν). 
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Here   referred as the covariant derivative also ijT  are usual 

matter energy-momentum tensor obtained from the 

Lagrangian mL . It is stated here that the physical properties of 

the matter field are determined by field equations. Numerous 

theoretical frameworks that represent various contributions of 

matter for f(R, T) gravitational potential; But Still, Harkoet 

al.[18] provided three classes for these models

)(2)(1),( TfRfTRf  . 
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Separate equation of field for different models of ),( TRf  

gravitation is presented as 

1. )(2),( TfRTRf   

 ijijijijijij gTfTfTTfTRgR )()(2)(28
2

1
     (6) 

2. )()(),( 21 TfRfTRf   
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  If pLm   then ijijij pgT  2      (8) 

The selection of the f (R, T) model affects the outcome, as 

is evident. In order to meaningfully depict our results, we 

must therefore select a workable f(R, T) model. The possibly 

cosmological criteria within f(R) theory, which characterizes 

the dark energy models, have been addressed by Nojiri and 

Odintsov [19]. The model that Sharif and Zubair [20] have 

chosen for us to discuss 

  )1(),( 321
qpnm RTTTRTRf       (9) 

Whereas m, n, p, and q are assumed to have values higher than 

or equal to 1. We will examine our findings in light of various 

applications of the above model, and we'll concentrate our 

subsequent discussion on the next three scenarios. 

  2
421),( TTRTRf   for   

  0,1,,0,1 314  qpnm    (10) 

 TRTRf 2),(  for 0,0,1,1 31   nm  (11) 

  )1(),( 2
321 RTTRTRf     (12) 

Making use of equations (6), (7) and (8) in conjunction with 

the (10), (11) and (12) , we have  

Model-I:- 2
421),( TTRTRf   for 

0,1,314,0,1  qpnm   is 
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Model-II:- TRTRf 2),(  for 0,0,1,1 31   nm
 

 ijijijij gTpTRgR 
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]8[
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So many scientists created cosmological models with 

perfect fluid substance explore the universe's accelerated 

expansion. Most recently discoveries show that the universe 

is expanding more quickly than predicted by the negative 

pressure caused by an unidentified type of energy i.e. named 

as dark energy. Due to this, we have to build a cosmological 

model of the accelerating universe lacking consideration for 

account of dark energy or dark matter, even though also 

selecting the greatest trustworthy matter component. As a 

result, the literature has extensively studied numerous 

cosmological models that include fluid with viscosity in the 

early universe [21, 22]. Also most of the researcher have 

studied on f(T), f(R,T) gravity [23, 24]. 

The current document is structured as follows: In Section 

2, in this part we extract the exact solutions to one of the 

instances where f(R,T) gravity by using methodology [22]. 

The perfect fluid model offers a sophisticated explanation of 

matter behavior, distinguished by its pressure and energy 

density. It is a perfect fit for our study due of its adaptability 

and suitability for a variety of physical environments. 

Regarding the time-varying DP-supported spatially 

homogeneous anisotropic Bianchi Type-I space-time the bulk 

viscous pressure, bulk viscous coefficient, energy density, 

matter trace, Ricci scalar, and energy conditions are obtained. 

Section 3 & 4 presents the physical properties of both models.  

2. Metric, Field Equations Solutions 

Cosmological models of the Bianchi type are significant 

because they are homogenous and anisotropic, providing a 

framework for studying the universe's isotropization 

throughout time. Furthermore, anisotropic universes are more 

general than isotropic models from a theoretical perspective. 

Bianchi space times are helpful in building models of spatially 

homogenous &anisotropic cosmologies because of the ease of 

solving an field equations with their relative simplicity.  

The LRS Bianchi Type-I line element is  

  )( 2222222 dzdyBdxAdtds    (15) 

However, A &B are the scale factors with function of cosmic 

time t only. 

The stress energy tensor of matter is taken to be 

   ijjiij pguupT  )(      (16) 
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Whereas )1,0,0,0(iu  is the four-velocity vector in co-

moving coordinate system satisfying 1jiuu . 

2.1 Model-I 

  2
421),( TTRTRf    for    

  0,1,,0,1 314  qpnm   

From (13) and (15) field equation obtained as 
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Where dot (.) indicate the derivative with to t and 
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Equating (22) and (23) we obtain 
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A

A
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B

B

B
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The expansion scalar relation is proportional to the shear 

scalar, resulting in 

    
nBA       (25) 

Using (25) in (24) we have the equation 

    0)1(
2

2


B

B
n

B

B 
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Assume )(BGB   then equation (26) is 

    0)1(  Gn
dB

dG
     (27) 

This is the linear differential equation in G, which leads the 

solution 

    BnekG )1(
1

      (28) 

Where 1k the constant of integration, hence is the solution is 

obtained as 

 )( 222222
2
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
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This is written as 

 )( 222222)1(2
1

22 dzdyBdxBdBekds nBn    (30) 

Now using transformation TB
~

 , Xx
~

 , Yy
~

  and Zz
~

 , eq. 

(30) takes the form    
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From (31) we have 

    nTA
~

  and TB
~

     (32) 

The average Hubble parameter obtained as  
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Expansion scalar is obtained as 
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The value of deceleration parameter will be 
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The average scale factor is 

    22 ~  nTABa      (36) 

Shear scalar is obtained as 
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To solve field equation now we consider relation 

    p
      (38)

 

From (22) and (38), we get 
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Then from (20) & (21) equation (40)  
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Now put value of A and B from eq. (32) in eq. (39) we get 
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Equation obtained in (42) is quadratic equation in  then by 
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Fig.1. Variation of energy density against T
~

for 51 k , 5.1n , 11 T

, 52 T  

 

Fig. 2.Variation of pressure against T
~

for 51 k , 5.1n , 11 T , 52 T
 

2.2 Model-II 

TRTRf 2),(  for 0,0,1,1 31   nm . 

Using equations (14) and (15), the field equations are 

obtained as 
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Here dot represents derivatives with respect to time 

In order to resolve the above field equations, we have 

proceeded in the same manner as describe in Model-I  

Now from equation (45) to (47) and (38) we have the equation 

  )]28()68[(
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In this model, by [22] the energy density and pressure are 

given as 

 

Fig.3. Variation of energy density against T
~

for 5.21 k , 5n , 

152  , 5.1  

 

Fig. 4. Variation of pressure against T
~

for 5.21 k , 5n , 152  , 

5.1  
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3. State Finder Diagnostic 

The state-finder pair {r, s} is characterized as 
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3
1

H

H
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H
r


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,  )(3

1

2
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


q

r
s    (51) 

The state-finder pair is diagnostic parameter in 

geometrical that is directly derived from a space-time metric 

also has more universal than physical variables because 

physical variables rely upon the properties of physical fields 

that define DE. 

The state-finder parameter values regarding our examples are 
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4. Physical Interpretation of Graph 

Fig. 1 shows that for Model-I, As T
~

goes on, the universe's 

energy density decreases and eventually tends to a constant 

value 0.1, 0 as T
~

.and values of density goes to 

infinite as T
~

tends to zero i.e.   as 0
~
T  so range 

of  is ),0(  . When it comes to pressure by Fig. 2, it is an 

increasing function of T
~

and takes the negative values 

throughout cosmic evolution p  as 0
~
T and 0p  

as T
~

It starts with extremely high negative values both 

initially and ultimately gets closer to zero and range of p is 

)0,( . Recent observations have demonstrated that the 

Universe is accelerating, and the negative pressure supports 

this phase and our model. 

For Model–II Fig. 3 shows that, a decaying function of 

time describes the energy density of the universe along with 

eventually approaches a constant value. i.e. T
~

as 

4.0  it will goes very close to y-axis as 0
~
T & Range 

interval of the density is ),5.0(  and from Fig. 4 pressure is 

increasing function takes the negative values throughout 

cosmic evolution and range set of the pressure is )1.0,(  

Conclusion 

In this study, we analyzed the LRS Bianchi Type-I 

cosmological model within the framework of f(R,T) gravity, 

considering a perfect fluid as the cosmic source. Two specific 

f(R,T) models were explored, leading to exact solutions of the 

modified Einstein field equations under the assumption of a 

time-dependent deceleration parameter. Various 

cosmological parameters, including the deceleration 

parameter, were examined. 

By adopting a special law of variation for the Hubble 

parameter and deceleration parameter, we derived solutions 

that describe the evolution of the universe. Notably, our 

results indicate that the deceleration parameter remains 

negative across all datasets, providing strong evidence that the 

universe is undergoing accelerated expansion, with the 

acceleration becoming progressively stronger over time. 
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