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A B S T R A C T 

The twenty-first century has been the era of data. Algorithms are crucial in tasks ranging from simple document searches to complex batching and 

scheduling jobs. Optimization techniques are often applied to enhance algorithms and achieve better results. As Moore rightly predicted, the exponential 

increase in transistors has led to a point where classical computers can no longer solve specific problems within a human timeframe. This paved the way 

for the development of quantum computers, which utilize quantum phenomena to solve problems. Quantum optimization techniques and algorithms have 
been designed to leverage the quantum advantage for improved optimization. This research compares and presents the results of quantum optimization 

techniques applied to classic combinatorial algorithms. 
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1. Introduction  

Quantum computers utilize quantum phenomena to 

execute various computations [1]. Quantum advantage 

primarily depends on two factors: first, the quantum 

computer itself, and second, the algorithms developed to 

leverage these quantum phenomena. The fundamental 

component of a quantum computer is known as a qubit. 

Qubits are said to exist in a superposition of two states: the 

off state (0) and the on state (1). Unlike a classical bit, which 

can be either in a 0 state or a 1 state, a qubit can be in both 

states simultaneously at the exact moment. This property 

allows n qubits to represent 2^n states at once.  

Quantum computing relies on three main quantum 

properties of an atom: 

i. Superposition  

ii. Entanglement  

iii. Interference 

Superposition is the property that allows atoms to exist in 

multiple states simultaneously. This property enables 

quantum computers to scale and perform exponentially 

better than classical computers. Entanglement is the 

phenomenon where two atoms remain correlated, even when 

separated by vast distances [2]. This property facilitates the 

instantaneous transfer of information. Interference is the 

process by which an atom collapses from a superposition 

into a single state when it interacts with its environment. 

Interference plays a crucial role in information security, as 

even a small disturbance can cause the collapse of an atom’s 

superposition state [3]. Another key phenomenon in 

quantum computing is quantum entanglement, which 

enables qubits to be intrinsically linked, regardless of 

distance. When entangled, the state of one qubit instantly 

determines the state of another, providing a means for highly 

efficient information transfer and parallel computation [4]. 

These quantum properties facilitate the execution of 

quantum algorithms such as Shor’s algorithm for integer 

factorization, which threatens conventional cryptographic 

security, and Grover’s algorithm for searching unstructured 

databases exponentially faster than classical algorithms 

[5][6]. Quantum advantage, the point at which a quantum 

computer surpasses classical systems in problem-solving 

efficiency, depends on the hardware and algorithms designed 

to exploit quantum mechanics effectively. Developing 

quantum algorithms and error correction techniques is 

crucial for practical quantum computing applications. 

Current implementations of quantum computers include: 

superconducting qubits, trapped ions, and topological qubits, 

each offering distinct advantages and challenges regarding 

coherence time, scalability and noise resistance [7]. Despite 

significant advancements, quantum computing still faces 

considerable challenges, including qubit decoherence, error 

rates, and the need for large-scale fault tolerance [8]. 

Researchers continue to explore novel materials, quantum 

error correction codes, and hybrid quantum-classical 

algorithms to enhance the feasibility and scalability of 

quantum computing [9]. 

Our study focuses on applying the Quantum 

Approximate Optimization Algorithm (QAOA) to classical 

combinatorial problems such as: Max-Cut and Knapsack 

Problem, demonstrating its effectiveness in achieving 

optimized solutions. Using these quantum principles, the 

QAOA is used as a promising method for solving classical 

combinatorial problems like Max-Cut and the Knapsack 

problem. This study evaluates QAOA’s effectiveness in 

finding optimized solutions and compares its advantages 

with classical techniques. By bridging classical and quantum 

optimization, it helps improve our understanding of quantum 

algorithms in problem-solving. Additionally, this research 

lays the groundwork for future studies by comparing QAOA 

with other quantum methods and benchmarking them against 

classical approaches. 

1.1 Optimization 

 Optimization for any algorithm can be of two types: (1) 

Arriving at a solution that is closest to the expected result, 

and (2) the amount of time taken to arrive at the solution. 
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Below are some of the commonly used quantum 

optimization techniques for computing problems. 

1.2 Quantum Annealing 

Quantum annealing, or Quantum Stochastic 

Optimization, is an optimization technique that allows us to 

find the global minimum for functions with several local 

minima. Quantum annealing uses two main techniques to 

achieve its goal: (i) quantum fluctuations and (ii) quantum 

tunneling. Quantum fluctuations refer to the change in the 

energy level of a qubit by an external magnetic field which 

allows it to end up in the lowest energy level. This quantity 

that controls the magnetic field is called bias [10]. Quantum 

tunneling helps qubits propagate through potential barriers 

instantaneously without climbing them. These factors prove 

quantum annealing is more efficient and faster to converge 

to the optimal solution [11].  

 1.3 Quantum Approximate Optimization Algorithm (QAOA) 

QAOA is an optimization technique that is used to solve 

combinatorial optimization problems like the NP-Hard Max-

cut problem. The aim of the max cut problem is to obtain a 

value close to the maximum no. of edge cuts (C) possible in 

a given graph (G). Classical function with binary variables is 

encoded by introducing a quantum spin for each variable. 

QAOA has proven to be more efficient than the classical 

technique in arriving at the closest solution [12]. 

1.4 Adiabatic Quantum Optimization 

Adiabatic Q-optimization aims to find the optimal 

solution by evolving the ground state rapidly. Similar to 

quantum annealing, this technique also starts with a 

Hamiltonian ground state. Unlike quantum annealing, which 

uses quantum tunneling to pass through states that might end 

up in a local minimum, this adiabatically evolves and arrives 

at the optimal solution [13,14]. 

2. Methodology 

QAOA Implementation: The QAOA is a hybrid 

quantum-classical algorithm designed to solve combinatorial 

optimization problems efficiently. It operates by iteratively 

optimizing a quantum circuit parameterized by classical 

optimization techniques. Our implementation of QAOA 

includes several crucial aspects: 

2.1 Parameter Selection 

The QAOA performance heavily depends on the 

selection of variational parameters β and γ, which control the 

evolution of the quantum state. We employed gradient-based 

and heuristic optimization methods, such as Nelder-

Meadand COBYLA, to fine-tune these parameters. 

2.2 Circuit Design:  

The quantum circuit for QAOA consists of alternating 

layers of problem Hamiltonian evolution and mixing 

Hamiltonian evolution. We used a depth parameter “p” to 

control the number of layers, balancing accuracy and 

quantum resource constraints. 

3. Proposed Work 

3.1 MAX CUT 

Max–Cut problem is a classical NP-Hard problem that 

tries to find the maximum cut which splits the graph into two 

sets that would have the greatest number of edges in between 

it [9]. QAOA is a quantum algorithm that leverages the use 

of quantum properties to arrive at an optimized approximate 

solution. QAOA is a heuristic algorithm that provides the 

closest answer in polynomial time. The algorithm does not 

guarantee performance but is expected to produce a result 

closest to the actual solution [10]. The circuit for finding the 

Maximum-Cut of the graph starts by placing all the qubits in 

superposition. This becomes the initial state. A unitary is 

applied to the circuit according to the Hamiltonian for the 

graph. Later, a mixing unitary is applied. Optimal 

parameters for the circuit are initialized using a classical 

optimization algorithm, which is then applied to a QAOA 

circuit. Steps are repeated until convergence is achieved. 

 

Fig. 1 Graph with 4 nodes 

 

Fig. 2 Circuit for solving using QAOA 

 

Fig. 3 Results for Max-Cut with 4 nodes 

QAOA also guarantees to achieve the most optimal 

solution for weighted Max-Cut problems. Here a 

Hamiltonian model of the weighted graph is generated which 

is then applied to the QAOA to find the maximum cut [7]. 
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3.2 Knapsack Problem 

The Knapsack problem is an NP-complete problem that 

involves combinatorial optimization. The problem involves 

finding the set of items that give the maximum value for a 

given knapsack weight. The problem has two flavors; one is 

the 0-1 Knapsack problem that only allows to add only one 

copy of an item. The bounded knapsack allows many copies 

of an item but restricts it to an upper bound. The quantum 

optimization for Knapsack is carried out using QAOA. The 

circuit is first initialized to superposition. Hamiltonian is 

constructed for the problem. The Hamiltonian is solved 

using the Minimum Eigen Optimizer. Thus, the result is 

obtained by finding the maximum value of the objective 

function.

 

Table 1 Max Cut Results using QAOA 

No of Nodes Graph Max-Cut Solution using QAOA 

3 

 

 

4 

 

  

5 

 
 

6 
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Table 2 Knapsack Results using QAOA 

No. of 

items 

Values Maximum 

Weight of 
Knapsack 

Weights Objective function 

(Max Z) 

Solution Time taken (s) 

5 [3, 4, 5, 6, 7] 10 [2, 3, 4, 5, 6]           
         
           

 
[0, 1, 3] 4.285 

6 [3, 4, 5, 6, 7,8] 12 [2, 3, 4, 5, 6,7]            
       
           
      

 

[0, 2, 4] 1.241 

7 [3, 4, 5, 6, 7,8,2] 15 [2, 3, 4, 5, 
6,7,10] 

           
      
 
           
      
     

 

[0, 1, 2, 4] 11.46 

4. Advantages of Quantum Optimizers over Classical 

Optimizers 

Quantum computing leverages superposition, allowing 

quantum bits (qubits) to exist in multiple states 

simultaneously rather than being confined to a single binary 

state like classical bits. This capability significantly 

enhances computational power, enabling the exploration of 

many possible solutions in parallel before arriving at an 

optimal result. For combinatorial optimization problems, this 

property provides a key advantage, as it allows quantum 

algorithms to evaluate numerous potential solutions 

efficiently. These problems are first mathematically 

modelled using a Hamiltonian function, representing the 

system's total energy, encoding the constraints and 

objectives of the optimization problem. Once the problem is 

formulated in this manner, Quantum optimizers are 

employed to find the best solution. Quantum optimizers are 

generally categorized into two types: 

4.1 Heuristic-based optimization:  

These methods use probabilistic and approximation 

techniques to explore the solution space and converge 

toward the most optimal solution. Examples include QAOA 

and the variational quantum Eigen solver (VQE). 

4.2 Performance-based optimization:  

These techniques focus on reducing time complexity, 

leveraging quantum speedup to solve problems faster than 

their classical counterparts. Algorithms such as Grover’s 

search or quantum annealing fall into this category, enabling 

more efficient computations for large-scale problems. 

By integrating these optimization strategies, quantum 

computing presents a promising alternative to classical 

approaches, particularly for complex combinatorial problems 

that require evaluating many possible solutions within a 

feasible timeframe. By incorporating these optimization 

strategies, quantum computing emerges as a promising 

alternative to classical approaches, particularly for solving 

complex combinatorial problems that involve evaluating a 

vast number of possible solutions within a feasible 

timeframe. 

5. Conclusion 

This research explores the potential of the QAOA in 

solving classical combinatorial problems such as the Max-

Cut and Knapsack Problem, both of which are fundamental 

in optimization and have wide-ranging applications in fields 

like logistics, finance, and network design. Our study 

demonstrates that QAOA effectively provides optimized 

solutions for these problems by leveraging quantum 

superposition and entanglement to explore multiple solution 

spaces simultaneously. QAOA consistently achieves near-

optimal results across various problem instances through 

iterative circuit optimization and variational parameter 

tuning. Despite its promising performance, the effectiveness 

of QAOA is influenced by factors such as quantum hardware 

noise, decoherence, and the selection of variational 

parameters. These challenges highlight the necessity for 

further refinement in quantum error mitigation and hybrid 

classical-quantum optimization techniques to improve their 

scalability and real-world applicability. Additionally, the 

depth of the QAOA circuit plays a crucial role in the 

accuracy of the solution, requiring a balance between 

computational complexity and hardware constraints. 

6. Future Scope  

Future research could extend this work by applying 

QAOA to a broader range of combinatorial problems, such 

as the Traveling Salesman Problem and Graph Partitioning, 

to assess its effectiveness across diverse optimization 

landscapes. Comparative studies with alternative quantum 

optimization methods, including Quantum Annealing and 

Variational Quantum Eigen solver VQE, could provide 

deeper insights into the relative advantages of different 

approaches. Further exploration into hybrid quantum-

classical strategies, improved error mitigation techniques, 

and scalability analysis will be essential for enhancing the 

feasibility of QAOA on near-term quantum hardware. 

Moreover, testing QAOA across various quantum 

architectures, such as superconducting qubits, trapped ions, 

and photonic quantum systems, may uncover hardware-

specific optimizations that improve performance. These 

directions will help advance quantum optimization 

techniques closer to practical real-world applications. 
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