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ABSTRACT

The twenty-first century has been the era of data. Algorithms are crucial in tasks ranging from simple document searches to complex batching and
scheduling jobs. Optimization techniques are often applied to enhance algorithms and achieve better results. As Moore rightly predicted, the exponential
increase in transistors has led to a point where classical computers can no longer solve specific problems within a human timeframe. This paved the way
for the development of quantum computers, which utilize quantum phenomena to solve problems. Quantum optimization techniques and algorithms have
been designed to leverage the quantum advantage for improved optimization. This research compares and presents the results of quantum optimization

techniques applied to classic combinatorial algorithms.

Keywords: Quantum Optimization, Combinatorial Algorithms, Quantum Computing, Algorithm Efficiency, Computational Complexity

1. Introduction

Quantum computers utilize quantum phenomena to
execute various computations [1]. Quantum advantage
primarily depends on two factors: first, the quantum
computer itself, and second, the algorithms developed to
leverage these quantum phenomena. The fundamental
component of a quantum computer is known as a qubit.
Qubits are said to exist in a superposition of two states: the
off state (0) and the on state (1). Unlike a classical bit, which
can be either in a O state or a 1 state, a qubit can be in both
states simultaneously at the exact moment. This property
allows n qubits to represent 2/*n states at once.

Quantum computing relies on three main quantum
properties of an atom:

i.  Superposition
ii. Entanglement
iii. Interference

Superposition is the property that allows atoms to exist in
multiple states simultaneously. This property enables
quantum computers to scale and perform exponentially
better than classical computers. Entanglement is the
phenomenon where two atoms remain correlated, even when
separated by vast distances [2]. This property facilitates the
instantaneous transfer of information. Interference is the
process by which an atom collapses from a superposition
into a single state when it interacts with its environment.
Interference plays a crucial role in information security, as
even a small disturbance can cause the collapse of an atom’s
superposition state [3]. Another key phenomenon in
quantum computing is quantum entanglement, which
enables qubits to be intrinsically linked, regardless of
distance. When entangled, the state of one qubit instantly
determines the state of another, providing a means for highly
efficient information transfer and parallel computation [4].
These quantum properties facilitate the execution of
quantum algorithms such as Shor’s algorithm for integer
factorization, which threatens conventional cryptographic
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security, and Grover’s algorithm for searching unstructured
databases exponentially faster than classical algorithms
[5][6]. Quantum advantage, the point at which a quantum
computer surpasses classical systems in problem-solving
efficiency, depends on the hardware and algorithms designed
to exploit quantum mechanics effectively. Developing
quantum algorithms and error correction techniques is
crucial for practical quantum computing applications.
Current implementations of quantum computers include:
superconducting qubits, trapped ions, and topological qubits,
each offering distinct advantages and challenges regarding
coherence time, scalability and noise resistance [7]. Despite
significant advancements, quantum computing still faces
considerable challenges, including qubit decoherence, error
rates, and the need for large-scale fault tolerance [8].
Researchers continue to explore novel materials, quantum
error correction codes, and hybrid quantum-classical
algorithms to enhance the feasibility and scalability of
quantum computing [9].

Our study focuses on applying the Quantum
Approximate Optimization Algorithm (QAOA) to classical
combinatorial problems such as: Max-Cut and Knapsack
Problem, demonstrating its effectiveness in achieving
optimized solutions. Using these quantum principles, the
QAOA is used as a promising method for solving classical
combinatorial problems like Max-Cut and the Knapsack
problem. This study evaluates QAOA’s effectiveness in
finding optimized solutions and compares its advantages
with classical techniques. By bridging classical and quantum
optimization, it helps improve our understanding of quantum
algorithms in problem-solving. Additionally, this research
lays the groundwork for future studies by comparing QACA
with other quantum methods and benchmarking them against
classical approaches.

1.1 Optimization

Optimization for any algorithm can be of two types: (1)
Arriving at a solution that is closest to the expected result,
and (2) the amount of time taken to arrive at the solution.
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Below are some of the commonly used quantum
optimization techniques for computing problems.

1.2 Quantum Annealing

Quantum  annealing, or  Quantum  Stochastic
Optimization, is an optimization technique that allows us to
find the global minimum for functions with several local
minima. Quantum annealing uses two main techniques to
achieve its goal: (i) quantum fluctuations and (ii) quantum
tunneling. Quantum fluctuations refer to the change in the
energy level of a qubit by an external magnetic field which
allows it to end up in the lowest energy level. This quantity
that controls the magnetic field is called bias [10]. Quantum
tunneling helps qubits propagate through potential barriers
instantaneously without climbing them. These factors prove
qguantum annealing is more efficient and faster to converge
to the optimal solution [11].

1.3 Quantum Approximate Optimization Algorithm (QAQA)

QAOA is an optimization technique that is used to solve
combinatorial optimization problems like the NP-Hard Max-
cut problem. The aim of the max cut problem is to obtain a
value close to the maximum no. of edge cuts (C) possible in
a given graph (G). Classical function with binary variables is
encoded by introducing a quantum spin for each variable.
QAOA has proven to be more efficient than the classical
technique in arriving at the closest solution [12].

1.4 Adiabatic Quantum Optimization

Adiabatic Q-optimization aims to find the optimal
solution by evolving the ground state rapidly. Similar to
quantum annealing, this technique also starts with a
Hamiltonian ground state. Unlike quantum annealing, which
uses quantum tunneling to pass through states that might end
up in a local minimum, this adiabatically evolves and arrives
at the optimal solution [13,14].

2. Methodology

QAOA Implementation: The QAOA is a hybrid
quantum-classical algorithm designed to solve combinatorial
optimization problems efficiently. It operates by iteratively
optimizing a quantum circuit parameterized by classical
optimization techniques. Our implementation of QAOA
includes several crucial aspects:

2.1 Parameter Selection

The QAOA performance heavily depends on the
selection of variational parameters 3 and y, which control the
evolution of the quantum state. We employed gradient-based
and heuristic optimization methods, such as Nelder-
Meadand COBYLA, to fine-tune these parameters.

2.2 Circuit Design:

The quantum circuit for QAOA consists of alternating
layers of problem Hamiltonian evolution and mixing
Hamiltonian evolution. We used a depth parameter “p” to
control the number of layers, balancing accuracy and
quantum resource constraints.

3. Proposed Work
3.1 MAX CUT

Max—Cut problem is a classical NP-Hard problem that
tries to find the maximum cut which splits the graph into two
sets that would have the greatest number of edges in between
it [9]. QAOA is a quantum algorithm that leverages the use
of quantum properties to arrive at an optimized approximate
solution. QAOA is a heuristic algorithm that provides the
closest answer in polynomial time. The algorithm does not
guarantee performance but is expected to produce a result
closest to the actual solution [10]. The circuit for finding the
Maximum-Cut of the graph starts by placing all the qubits in
superposition. This becomes the initial state. A unitary is
applied to the circuit according to the Hamiltonian for the
graph. Later, a mixing unitary is applied. Optimal
parameters for the circuit are initialized using a classical
optimization algorithm, which is then applied to a QAOA
circuit. Steps are repeated until convergence is achieved.
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Fig. 3 Results for Max-Cut with 4 nodes

QAOA also guarantees to achieve the most optimal
solution for weighted Max-Cut problems. Here a
Hamiltonian model of the weighted graph is generated which
is then applied to the QAOA to find the maximum cut [7].
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3.2 Knapsack Problem

The Knapsack problem is an NP-complete problem that
involves combinatorial optimization. The problem involves
finding the set of items that give the maximum value for a
given knapsack weight. The problem has two flavors; one is
the 0-1 Knapsack problem that only allows to add only one
copy of an item. The bounded knapsack allows many copies

Table 1 Max Cut Results using QAOA

of an item but restricts it to an upper bound. The quantum
optimization for Knapsack is carried out using QAOA. The
circuit is first initialized to superposition. Hamiltonian is
constructed for the problem. The Hamiltonian is solved
using the Minimum Eigen Optimizer. Thus, the result is
obtained by finding the maximum value of the objective
function.
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Table 2 Knapsack Results using QAOA

Maximum
Weight of
Knapsack

No. of Values

items

Weights

Objective function Solution

(Max 2)

Time taken ()

5 [3,4,5,6,7] 10 [2,3, 4, 5, 6]

6 [3,4,5,6,7,8] 12 [2,3,4,5,67]

7 [3,4,5.6,782] 15 2 3 4 5

6,7,10]

3*x 0+ 4%x_
14+5x2+6
x*x 3+ 7x_4
3'x 0+4"x_1
+5'x_2 +
6'x 3+ 7'x 4
+8*x_5

3'x 0+4"x_1
+5%x_2

+

6'x 3+7'x_4
+8"x_5

2'x_6

[0,1,3] 4.285

[0, 2, 4] 1.241

[0,1,24] 11.46

4. Advantages of Quantum Optimizers over Classical
Optimizers

Quantum computing leverages superposition, allowing
quantum bits (qubits) to exist in multiple states
simultaneously rather than being confined to a single binary
state like classical bits. This capability significantly
enhances computational power, enabling the exploration of
many possible solutions in parallel before arriving at an
optimal result. For combinatorial optimization problems, this
property provides a key advantage, as it allows quantum
algorithms to evaluate numerous potential solutions
efficiently. These problems are first mathematically
modelled using a Hamiltonian function, representing the
system's total energy, encoding the constraints and
objectives of the optimization problem. Once the problem is
formulated in this manner, Quantum optimizers are
employed to find the best solution. Quantum optimizers are
generally categorized into two types:

4.1 Heuristic-based optimization:

These methods use probabilistic and approximation
techniques to explore the solution space and converge
toward the most optimal solution. Examples include QAOA
and the variational quantum Eigen solver (VQE).

4.2 Performance-based optimization:

These techniques focus on reducing time complexity,
leveraging quantum speedup to solve problems faster than
their classical counterparts. Algorithms such as Grover’s
search or quantum annealing fall into this category, enabling
more efficient computations for large-scale problems.

By integrating these optimization strategies, quantum
computing presents a promising alternative to classical
approaches, particularly for complex combinatorial problems
that require evaluating many possible solutions within a
feasible timeframe. By incorporating these optimization
strategies, quantum computing emerges as a promising
alternative to classical approaches, particularly for solving
complex combinatorial problems that involve evaluating a
vast number of possible solutions within a feasible
timeframe.

5. Conclusion

This research explores the potential of the QAOA in
solving classical combinatorial problems such as the Max-
Cut and Knapsack Problem, both of which are fundamental
in optimization and have wide-ranging applications in fields
like logistics, finance, and network design. Our study
demonstrates that QAOA effectively provides optimized
solutions for these problems by leveraging quantum
superposition and entanglement to explore multiple solution
spaces simultaneously. QAOA consistently achieves near-
optimal results across various problem instances through
iterative circuit optimization and variational parameter
tuning. Despite its promising performance, the effectiveness
of QAOA is influenced by factors such as quantum hardware
noise, decoherence, and the selection of variational
parameters. These challenges highlight the necessity for
further refinement in quantum error mitigation and hybrid
classical-quantum optimization techniques to improve their
scalability and real-world applicability. Additionally, the
depth of the QAOA circuit plays a crucial role in the
accuracy of the solution, requiring a balance between
computational complexity and hardware constraints.

6. Future Scope

Future research could extend this work by applying
QAOA to a broader range of combinatorial problems, such
as the Traveling Salesman Problem and Graph Partitioning,
to assess its effectiveness across diverse optimization
landscapes. Comparative studies with alternative quantum
optimization methods, including Quantum Annealing and
Variational Quantum Eigen solver VQE, could provide
deeper insights into the relative advantages of different
approaches. Further exploration into hybrid quantum-
classical strategies, improved error mitigation techniques,
and scalability analysis will be essential for enhancing the
feasibility of QAOA on near-term quantum hardware.
Moreover, testing QAOA across various quantum
architectures, such as superconducting qubits, trapped ions,
and photonic quantum systems, may uncover hardware-
specific optimizations that improve performance. These
directions will help advance quantum optimization
techniques closer to practical real-world applications.
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