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A B S T R A C T 

This study explores how Deep Q Networks (DQNS) can be applied to classifying data with standard datasets. Though DQNs are designed for sequential 

decisions, this study uses the Iris and Diabetes datasets, which are both used for classification, to test the performance. It investigates DQNs with different 

data imbalances and compares their results based on the quantity of data. Models are assessed using accuracy, precision, recall, F1 score, ROC-AUC, the 

amount of memory required, and their training speed. As demonstrated by the results, DQNs can match other algorithms in accuracy while attaining 
accuracy rates between 84% and 95% for various datasets and modified configurations. Based on the study, performance can be affected by adjusting 

hyperparameters and the distribution of data classes. DQNs are more complex than common classifiers such as SVMs and decision trees, and their main 

contribution in simple classification is yet to be proven. It adds to the enthusiasm for using reinforcement learning models in the context of supervised 
learning. The paper highlights the value of correct evaluation, points out risks linked to model over-fitting and includes new areas to pursue in the future 

such as benchmarking, clarifying models and using hybrid systems. 
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1. Introduction 

Deep Q Networks (DQNs) are a type of algorithm that 

combines Q-learning with deep neural networks [1]. They 

are used to train computers to make decisions by learning 

from interactions with their environment. In this approach, 

agents build the Q-value to estimate how rewarding it could 

be to take a certain action in a specific condition. By 

including deep neural networks, DQNs can process more 

complex data, such as images, giving them a greater ability 

than previous algorithms. A memory mechanism in some 

DQNs aids the agent’s learning since it separates the way the 

current input influences decision-making from the agent’s 

memories and rewards. Besides, during the training process, 

a second neural network computes the target Q-values 

needed to stabilize the overall process. The goal of the agent 

is to maximize the total expected reward over time [2]. 

The introduction of DQNs has helped RL models to use 

their old experiences to select suitable actions and operate in 

changing situations. With DQNs, deep learning is introduced 

because the architecture can manage inputs from complex 

and difficult state spaces. They help make both the system 

more stable and efficient [3]. 

Reinforcement learning has seen remarkable growth 

because it has worked well in games, robotics, healthcare, 

finance, and other areas. DQNs are famous for helping to 

teach AI to beat people at Atari games and Go, volunteer 

work accomplished by Google DeepMind. Furthermore, 

autonomous driving uses DQNs, as they enable the system to 

react instantly to uncertain situations [4]. 

This research analyzes DQNs in supervised classification 

and uses them on the popular Iris and Diabetes datasets. Sir 

R.A. Fisher developed the Iris dataset which has information 

about 150 flowers in the category of irises, listed using four 

characteristics: the lengths of their sepals, the widths and the 

lengths and widths of their petals. Each sample is placed in 

one of the species: Iris-setosa, Iris-versicolor or Iris-

virginica. Forty-four k is always turned into four hundred 

forty patients are included in the Diabetes dataset, while ten 

clinical features such as age, BMI, blood pressure and 

cholesterol are taken into account. The goal is to forecast the 

evolution of diabetes using these properties. 

This study makes DQNs, which are used for 

reinforcement learning, useful in the field of supervised 

classification. Such a novel use of RL-based models brings 

up questions about their ability to handle tasks without any 

given rewards. Thus, this research explores how standard 

DQNs behave on typical classification problems and 

changes their behavior when faced with datasets containing 

different classes. 

One of the difficulties in machine learning is when the 

examples in different categories are not equally represented. 

When such a problem happens, the model is likely to 

perform worse on the minority class. For this purpose, the 

study checks the model’s performance with balanced as well 

as unbalanced datasets. 

The structure of the paper is as follows: Section II 

provides a literature review focusing on deep neural 

networks. Section III provides the methodology in which 

experiments and outcomes are depicted. The results and 

findings are summarized in Section IV. 

2. Literature Review 

The improvement known as DQNs plays a vital role in 

reinforcement learning processes. Traditional Q-learning 

gets enhanced through deep neural networks to create 

computational models capable of taking improved decisions. 

AI learns optimal actions in complex environments through 

the union of two techniques regardless of the numerous 

possible decisions available. The computational difficulty 

experienced by standard Q-learning disappears when we 

implement DQNs because they provide machines with better 

management capabilities [5]. 
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DQNs function as a crucial tool for developing end-to-

end learning systems within the autonomous driving field. 

The system takes unprocessed sensor data such as video 

images and directly generates driving instructions as a result 

of learning the complete driving policy without modular 

boundaries. The method stands opposite to conventional 

modular pipeline designs because it requires separation 

between perception and planning and control activities. The 

end-to-end approach presents a method that provides both a 

simplified and potential stronger system for autonomous 

vehicle navigation [4]. 

The accurate potential of both DQNs and end-to-end 

learning approaches in self-driving cars exists alongside 

major implementation barriers [6]. Safety requirements, 

along with reliability functions, as well as decision-making 

transparency, data input requirements, and real-world 

performance capacity, compose the major obstacles. The 

system requires capabilities to manage different 

unpredictable scenarios to guarantee safety for people 

traveling in the vehicles as well as all road users. The main 

drawback of deep learning models exists in their inability to 

display their decision-making process, which results in 

decision opacity [7]. The lack of understanding about their 

decision-making processes prevents users from establishing 

confidence in the systems or locating ongoing issues. The 

training of these models requires extensive datasets, which 

require significant human labor to gather and properly mark. 

The accuracy of simulation-trained models suffers when 

implemented in real operating conditions because simulation 

environments do not perfectly replicate actual reality [8, 9]. 

The use of DQNs in actual automobiles requires resolving 

identified problems [10, 11]. 

 Contrary to reinforcement learning use cases, many DQN 

studies have been carried out, but the number of studies on 

their use in classification is limited. Recently, research 

projects have made efforts to use RL algorithms in both 

image classification and medical diagnosis. Authors tested 

using RL for class imbalance and used reward shaping 

strategies to solve this problem [12]. At the moment, using 

DQNs for simple classification problems remains an under-

discussed topic. Many people prefer to use Support Vector 

Machines (SVMs), Random Forests and Logistic 

Regression, since they are clear, perform well and have a 

record of accomplishment on data tables. Many studies have 

revealed that simple supervised models usually do better 

than complex RL ones in performance when decisions are 

made in sequence [13]. 

The innovation of this research is using a DQN algorithm 

on regular classification datasets and comparing its results 

on balanced and unbalanced data. Previous literature does 

not usually focus on this application but mentions it when 

discussing ensembles of instruments. Since there is limited 

research on this topic, it suggests more studies to be 

conducted as people are increasingly interested in using deep 

RL in other domains. 

In brief, DQNs are effective in reinforcement learning, 

but using them directly in classification is not widely 

explored and requires additional investigation. Here, the 

study provides an in-depth analysis of how DQNs behave 

differently on various datasets. In turn, this will support 

future researchers in improving RL methods for 

classification. 

3. Methodology 

In Figure 1, all the steps of the DQN model and its 

phases are involved. The first step is dataset selection; two 

datasets, Iris and Diabetes, were selected. The second step is 

preprocessing, which consists of splitting each dataset into 

four parts: 25%, 50%, 75%, and 100%. Further, these parts 

are divided into balanced and unbalanced subsets to test the 

effect of class distribution. 

 

Fig. 1 Methodology Diagram of the DQN algorithm 
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The third step is hyperparameter tuning. For this phase, 

random state and epochs are fine-tuned for the Iris dataset. 

For the Diabetes dataset, random state and batch size are 

changed to examine their influence on performance. These 

values were selected based on initial trials to optimize 

training stability and accuracy, using commonly accepted 

ranges from similar DQN applications. For example, the 

learning rate of 0.0005 is a standard traditional value that 

prevents overshooting during optimization. 

The fourth step is training and testing, where train-test 

splits are applied, such as 50% training and 50% testing, 

60% training and 40% testing, and so on. The fifth step 

involves generating evaluation results, including memory 

usage, accuracy, precision, recall, ROC-AUC, training time, 

and testing time. Rather than using rewards, the DQN’s 

learning was adapted here to count each correct 

classification, so the agent received a positive signal each 

time it made such a prediction. 

There are two datasets utilized for the experimentation 

process. These datasets are the Iris and Diabetes datasets. 

The following are the descriptions of these two datasets: 

The Iris dataset, first introduced by Sir R.A. Fisher, 

contains 150 instances, with 50 samples from each of three 

classes: Iris-Setosa, Iris-Versicolour, and Iris-Virginica. The 

dataset has four numeric attributes: sepal length, sepal width, 

petal length, and petal width, measured in centimeters. There 

are no missing values, and the class distribution is also fairly 

balanced, with a third of the dataset making up each of the 

three species [14]. 

The Diabetes dataset includes 442 instances, each 

representing a diabetes patient. For each patient, 10 baseline 

variables were recorded: age, sex, body mass index (BMI), 

average blood pressure (BP), and six blood serum 

measurements (s1 to s6). These serum measurements include 

total serum cholesterol (s1), low-density lipoproteins (ldl, 

s2), high-density lipoproteins (hdl, s3), the total cholesterol 

to HDL ratio (tch, s4), the log of serum triglycerides (ltg, 

s5), and blood sugar level (glu, s6). The dataset’s target 

variable, found in the 11th column, is a measurement of how 

the disease has progressed one year after the first data was 

collected. The first 10 variables are numbers and are used to 

help predict how the disease will develop over time. 

Here's a table of all the general hyperparameters used for 

this algorithm. Table 1 shows the general hyperparameters 

used for this algorithm are shown in Table 1, along with 

their description and values used for model implementation. 

In Table 2, for the Iris dataset, hyperparameter 1 is 

Random_state, and hyperparameter 2 is epochs. In addition, 

for the diabetes dataset, hyperparameter 1 is Random_state, 

and hyperparameter 2 is batch_size. 

Following Table 2. demonstrates all hyperparameters 

along with their values used in the algorithm: 

Table 1. Hyperparameters Used in DQN Algorithm 

No. Hyperparameter Description Values used in dataset 

1. Learning Rate It is the rate or step by which the model adjusts its weights in each phase during 
the training process. 

0.0005 

2. Batch Size Number of samples in the training dataset that go through before the weights of the 
model are modified. 

16 

3. Epochs Number of times the full training dataset has gone through the training phase of the 

model. 

50 

4. Layers and Units Layers and Units describe the structure of the neural network. 128, 64, 32, & 2 units 

5. Loss Function Measures the difference between the predicted and true values. categorical_crossentropy 

6. Optimizer Specifies the scheme of how the model adjusts weights in the course of the 
training session. 

tf.keras.optimizers.Adam 

7. Random State Controls and reduces variability as it smooths it out when splitting the available 
dataset. 

42 

Table 2. Hyperparameters along with their values 

Dataset Hyperparameter 1 Hyperparameter 2 Accuracy Training Time Memory Used 

Iris 42 50 0.90 34.90 8.14 

Iris 55 100 0.93 51.62 4.78 

Iris 83 150 0.97 68.82 11.72 

Diabetes 42 16 1.00 34.48 45.81 

Diabetes 19 32 1.00 34.52 0.13 

Diabetes 89 25 1.00 34.84 12.18 

4. Experimentation 

The system runs on Windows 8.1 with an AMD64 

Family 22 Model 0 Stepping 1 processor and a 64-bit 

architecture. It has 11.44 GB of RAM but does not have a  

detected GPU. The installed Python version is 3.11.7, and 

TensorFlow version 2.16.1 is being used. The datasets 

utilized include the Iris dataset, sourced from the UCI 

Machine Learning Repository, and the Diabetes dataset, 

which is a built-in dataset from Scikit-learn. 
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The high accuracy of 100% noticed on Diabetes was 

reason enough to proceed with additional evaluations. We 

noticed that changing the configuration and applying 

SMOTE to create more training data increased the accuracy 

significantly to 84% to 88%. By using this step, the machine 

learning model can perform well in different situations. 

Moreover, using a wide range of experience made the 

DQN model less likely to only learn from a narrow set of 

examples. These changes were necessary to create more 

realistic results, as errors do occur in hospital records. As a 

result, this proves that DQNs are flexible in tough situations, 

making the experimental design better for reproducibility. 

The table below summarizes the behaviors of the DQN  

model using a combination of various hyperparameters. 

With the Iris dataset, several random state and epoch values 

were applied and in the case of the Diabetes dataset, random 

state and batch size were modified. Following the expanded 

and analyzed dataset, the Diabetes dataset gave accurate 

results between 84% and 88%. 

Table 4 Shows all the results achieved through model 

experimentation such as accuracy, precision, recall, F1 score 

and ROC from 100%, 75%, 50%, 25% balance and 

imbalance dataset.  

Table 5 Shows time complexity like training time, testing 

time and memory usage at 100%, 75%, 50%, 25% balance 

and imbalance dataset. 

Table 3. Accuracy, training time, and memory usage of the DQN model for different hyperparameter settings across Iris and Diabetes datasets. 

Dataset Hyperparameter 1 Hyperparameter 2 Accuracy Training Time Memory Used 

Iris 42 50 0.90 34.90 8.14 

Iris 55 100 0.93 51.62 4.78 

Iris 83 150 0.95 68.82 11.72 

Diabetes 42 16 0.84 41.55 45.81 

Diabetes 19 32 0.86 42.52 0.13 

Diabetes 89 25 0.88 44.32 12.18 

Table 4. Results of Accuracy, Precision, Recall, F1 Score and ROC 

 Dataset 100% Dataset 75% Dataset 50% Dataset 25% Dataset 

Types Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced 

Accuracy 0.756757 0.774775 0.738739 0.783784 0.737557 0.737557 0.747748 0.774775 

Precision 0.738095 0.761905 0.736842 0.767442 0.744186 0.728261 0.731707 0.750000 

Recall 0.659574 0.680851 0.595745 0.702128 0.640000 0.670000 0.638298 0.702128 

F1 score 0.696629 0.719101 0.658824 0.733333 0.688172 0.697917 0.681818 0.725275 

ROC 0.834109 0.851729 0.835771 0.853391 0.830826 0.842066 0.820479 0.861037 

 

Fig. 2  Graph of Accuracy, Precision, Recall, F1 Score, and ROC at 100% 
Balance & Imbalance  

 

Fig. 3 Graph of Accuracy, Precision, Recall, F1 Score, and ROC at 50% 

Balance & Imbalance.  

Table 5. Results of Time complexity: Training Time, Testing Time and Memory Usage  

 100% Dataset 75% Dataset 50% Dataset 25% Dataset 

 Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced 

Training Time 48.977339 45.379100 39.590767 36.043091 42.447826 44.336924 49.762005 46.945287 

Testing Time 2.224016 3.258235 2.080025 1.791542 2.112004 2.267170 1.826308 1.896097 

Memory Usage  39.45 22.37 19.1 15.85 Memory Usage  39.45 22.37 19.1 
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Fig. 4 Graph of Time complexity: Training Time, Testing Time and Memory Usage 

The imbalanced dataset performs better than the balanced 

dataset in terms of accuracy, F1-score, and ROC-AUC, 

shown in Figure 2 and Figure 3 at 100% and 50% datasets, 

respectively. All conditions show a similar training time, 

indicating that dataset balance or imbalance has minimal 

impact on the time taken for model training. Testing time 

remains relatively low across all conditions, with slight 

variations. This suggests that dataset balance or imbalance 

does not significantly affect testing efficiency. Moreover, the 

worst memory usage is at 100% balanced and gradually 

decreases as the number of samples decreases. This suggests 

that 100% datasets need more memory space in order to 

perform the specific functions of a DQN. 

5. Results and Discussion 

Table 4 outlines the experimental findings on the DQN 

model for data slices (100%, 75%, 50%, 25%) and class 

distributions (balanced and imbalanced). These tests used 

classical output measures such as accuracy, precision, recall, 

F1 score and ROC-AUC. 

Across the Iris dataset, as the number of training epochs 

increased, it resulted in better generalization, as accuracy 

rose from 0.90 to 0.95. However, the model performed 

reasonably and did not exhibit any signs of overfitting. As 

intended, the Iris dataset is limited in size, equally balanced 

and properly organized. 

On the other hand, the initial results for the Diabetes 

dataset were very high (100% accuracy), leading experts to 

worry. As a result, new assessments were done by increasing 

the amount of data with SMOTE and training the models 

using various configurations. Because of this, the accuracy 

was improved and fell between 84% and 88%. This indicates 

that the earlier outcomes were most likely affected by 

overfitting due to having a small and consistent set of data.  

Training time was similar for different datasets and 

varying numbers of classes. We can conclude that different 

data balances did not change the time it took to train the 

model. The tests showed that variations were small and the 

data led to slightly faster outcomes on evenly divided 

datasets. The most memory was required when the dataset 

was fully balanced, and it reduced as the sample size 

decreased.  

In general, DQNs can handle classification and show 

strong results in environments outside the RL field. Still, 

people working with datasets like Diabetes must take care 

when interpreting the results. It is also made clear that 

attention to tuning, variable datasets and proper comparison 

helps prevent inaccurate results. 

The observation was supported by the finding that 

slightly better performance came from using unbalanced 

datasets. The mean accuracy for datasets with imbalanced 

datasets was 0.7682 (±0.0173), whereas accuracy on 

balanced datasets was 0.7452 (±0.0144). Additionally, the 

average F1-score was 0.7189 (±0.0149) when the data was 

imbalanced and 0.6819 (±0.0158) when it was balanced. 

This goes along with the trend, but it is only a small 

difference and should be analyzed thoughtfully. 

Further analysis should be done with known classifiers, 

including Logistic Regression, SVM and Random Forest, to 

confirm if DQNs are more effective. Besides, SHAP and 

LIME allow people to understand the reasoning behind DQN 

predictions clearly. 

6. Conclusion 

The model was evaluated by testing it on the Iris and 

Diabetes datasets and the results suggested that it is 

effective. Following evaluation and changes, the model gave 

a correct result for 95% of the Iris samples and 84%–88% of 

the Diabetes samples. It is shown that DQNs, developed for 

reinforcement learning, work well for supervised feature 

classification after they are properly tuned. Some 

experiments pointed out that, if the data was not balanced, 

error rate could go down, but generally because the model 

was biased towards the most common class. Balanced 

datasets gave similar results in every metric: precision, recall 

and F1-score. These results suggest that understanding the 

distribution of classes improves model evaluation. In 

addition, setting the right values for random state, epochs 

and batch size was very important for the training, especially 

in small datasets such as Iris and Diabetes. Using a larger 

and balanced dataset led to a bigger memory usage and 
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longer training time. The more data I had, the more time and 

memory was required to process it. Testing time usually 

stayed the same regardless of the environment, suggesting 

that DQN performance in inference is reliable. Even though 

the results were encouraging, there are still significant 

obstacles in this study. At first, the very high results on the 

Diabetes dataset were seen to be overfitting, so the issue was 

repaired by adding new trials and using more training data. 

As a result, adopting explainable AI methods (for example, 

SHAP and LIME) will address the unclear nature of deep 

learning, so its use in areas such as healthcare and finance 

will become more transparent. All in all, DQNs have shown 

possibilities in classifying data, but they need to be adjusted 

carefully, managed properly and thoroughly reviewed. It is 

vital to aim at new ways to balance training, improve 

reliability under real-world situations and add reinforcement 

learning with supervised approaches to develop hybrid 

models. 
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