
The Nucleus 51, No. 4 (2014) 397-404

www.thenucleuspak.org.pk

 397

The Nucleus

I S S N 0 0 2 9 - 5 6 9 8 (P r i n t)

I S S N 2 3 0 6 - 6 5 3 9 (O n l i n e)

Selection of Optimal Path Planning Algorithm for Autonomous Robots in Structured

Environment

H. Bashir and M.H. Yousaf
*

Department of Computer Engineering, University of Engineering and Technology, Taxila, Pakistan

A R T I C L E I N F O

Article history:

Received : 27 December 2013

Revised : 17 October 2014

Accepted : 20 October 2014

Keywords:

Autonomous robot path planning

Optimal paths
Shortest path algorithms

Cost search algorithm

A B S T R A C T

To determine a collision free path for a robot between start and goal positions in an environment

filled with obstacles is a very challenging task in the design of an autonomous robot path planning.
This paper aims to select an optimal path planning algorithm for a mobile robot in structured

environment. To achieve the goal, comprehensive strengths and weaknesses of different path

planning algorithm are discussed and evaluated. A wooden box with some fixed obstacles and robot
inside it is basically the environment. Information about the environment is used to build a roadmap

or graph of the environment. After getting a convenient representation of the environment, then

graph search methods can be used to obtain shortest possible path through this roadmap. It is well
known that computing shortest paths for autonomous robots is an important task in many path

planning applications. Selecting a suitable algorithm from the various algorithms reported in the

literature is a decisive step in many applications including path planning task. A set of three shortest
path algorithms that compute optimal path from start to goal location has been identified and these

are Uniform Cost Search, Greedy Search and A* algorithm. After comparing execution time and path

length of path computed by these three algorithms, A * algorithm proves to be best suited for this

particular application of path planning.

1. Introduction

Robot path planning or motion planning can be

classified as a class of algorithms that accept high level

description tasks and generate valid and accurate path

combinations for the robot to follow. In simple words, path

planning can be taken as a task in which the robot, whether

it is a mobile robot has to navigate from its start point to a

specific destination or goal point by preventing collisions

with the obstacles in its way. Path planning has helped to

solve a huge number of problems in the modern world.

Surgical planning [1], automation, animation of digital

characters [2], autonomy, mapping of unexplored

environments and drug design [3] are some of the major

applications of path planning.

Piano mover's problem [4] is one of the traditional

version of path planning in which a path planning algorithm

accepts a piano and a precisely computer aided designed

house as input. The algorithm then has to compute a path

for moving the piano from one location to another location

inside the house avoiding collisions with the walls of the

house and with the obstacles. In this case the obstacles are

assumed to be fixed and their exact locations are known.

Thus an accurate path can be planned from start location to

goal location. Planning is done before execution that’s why

termed as off line path planning. Another case can be when

the environment is dynamic and robot comes across an

obstacle in its path from start to goal. In that case,

re-planning of path is required. So this type of planning is

called as on line path planning and is common in outdoor

scenes and unstructured environments.

First step is always to identify obstacles so segmentation

is very important phase of path planning. Different

segmentation techniques are used in the field of robotics

depending on the requirement of application. Researchers

have used threshold based methods [5] for image

segmentation in structured environments, when the goal is

to identify few objects based on their color properties. This

is case where specific colors are assigned to the objects in

the environment.

Then, region based segmentation [6] for object

recognition has also been used by the researchers. For

unstructured environments, a segmentation technique,

proposed by Sundaresan and Konolige, which combines

both texture and color information [7] has been used. In

case of indoor environments, another technique has also

been proposed by the researchers, in which the robot will

fixate at various points in the scene and then perform the

segmentation of the object containing the fixation point [8].

Segmentation provides the location of obstacles then

corner points of these obstacles must be detected in order to

create visibility graph. Various corner detection techniques

exist in literature. Harris corner detector [9] is one of the

popular corner detector techniques and it is based on the

Paki stan

The Nucleus

 Corresponding author : haroon.yousaf@uettaxila.edu.pk

mailto:haroon.yousaf@uettaxila.edu.pk

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

398

signal local auto correlation function where this function

calculates the local changes of the signal with patches that

are shifted in different directions by small amount. Susan

[10] another detector proposed by Smith and Brady which

uses a circular mask for edge and corner detection. A

technique is proposed in [11], in which the total curvature

of the gray level image is directly proportional to the

second-order directional derivative in the direction to edge

normal and curvature is inversely proportional to the

strength of edge. A multi scale algorithm has been proposed

by Rattarangsi and Chin [12] that is based on curvature

scale space (CSS) which helps in corner detection of planar

curves. Corner detector based on local and global curvature

properties [13] is another technique which detects both fine

and coarse features precisely at low computational cost.

After corner detection, obstacles are identified so it

makes sense to first obtain a data structure i.e. a graph or

map of the environment and searching algorithm then uses

this information to find the optimal path. So, it is required

to build a graph or map of the environment before

implementation of any path planning algorithm. Road maps

are included among the various classes of topological maps

[14, 15]. These are basically graph like structures in which

edges represent adjacency relationship between the nodes

and nodes represent some distinguished features. Another

prominent technique is one proposed in [16] in which they

use the concept of rotation trees. After that, another

technique proposed by Ghosh and Mount [17] in which

they introduced a planar scan technique using funnel and

triangulation splits to achieve running time of O

(e+nlogn).Another popular technique for generating a

roadmap is Voronoi diagram [18].

In road map techniques, another notable technique used

by researchers is cell decomposition technique. Cellde

composition methods present another mean of representing

the free space of environment. Notable exact cell

decomposition techniques include the trapezoidal

decomposition technique [19] which basically depends on

the polygonal representation of the configuration space.

Moarse decomposition [20] is another method which

belongs to a general class of exact cell decomposition and

is used for non planar configuration spaces and non

polygonal obstacles.

The output of these methods is either a graph or a map

containing the possible path combinations to reach the

destination point from the start point. The two basic search

algorithms are Depth-first and Breadth-first algorithms [2].

Dijkstra's algorithm is a type of breadth first search

algorithm conceived by Dutch computer scientist Edsger

Dijkstra’s in 1959. Uniform-cost search (UCS) is a tree

search algorithm used for searching a tree structure,

weighted tree, or graph to find optimal path. Best first

search algorithm is a greedy algorithm which optimizes the

breadth first search in a way that it has some heuristic

estimate of distance of a node from the destination. A* is a

very well-known algorithm developed by Hart et al. [20]. It

is an extension of Dijkstra's algorithm that tries to minimize

the number of nodes to be explored by incorporating in its

search, the heuristic estimate of the cost to get to the

destination node from a given node. So it is combination of

both best first search and Dijkstra's algorithm.

Some motivational examples are used to show the need

for studying the path planning algorithms. Path planning

algorithms have widespread success and usage in the field

of automation, mobile robotics, aerospace applications and

manufacturing. Progress in these fields regarding the path

planning indicates much more fascinating applications in

coming years. Some of the path planning applications

includes:

 Toyota Humanoid robot that works by planning the

path in order to grasp specific objects avoiding the

obstacles in its way.

 'Opportunity' robot that is sent by NASA on Mars for

research purposes. In order to maneuver itself on the

planet, the robot combines vision with path planning to

avoid the obstacles.

2. Problem Statement

Automatic path planning for autonomous robots is a

very challenging task. Generating optimal paths for

autonomous robots is one of the difficult topics in mobile

robotics applications. The environments in which the robots

work can be structured or unstructured. Cameras are used

mostly to sense environment which is structured in this

particular case as obstacles are fixed and no re-planning is

needed. Once the information about the environment is

known, then next step is to build a roadmap or graph of the

environment. For building the roadmaps, Different

algorithms usually exist in this field of path planning. After

a convenient representation of the environment is obtained,

then graph search methods can be used to find the optimal

paths through this roadmap.

It is well known that computing shortest paths for

autonomous robots is an important task in many path

planning applications. Selecting a suitable algorithm from

the various algorithms reported in the literature is a decisive

step in many applications including path planning task. A

set of three shortest path algorithms that compute optimal

path from start to goal location has been identified. These

three algorithms are:1) Uniform Cost Search 2) Greedy

Search Algorithm 3) A* Search Algorithm [2] and then

performance evaluation of these algorithms is also a

challenging task.

http://en.wikipedia.org/wiki/Tree_search_algorithm
http://en.wikipedia.org/wiki/Tree_search_algorithm
http://en.wikipedia.org/wiki/Tree_search_algorithm
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Weighted
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Graph_%28data_structure%29

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

 399

3. Proposed Methodology

Fig. 1. Proposed methodology.

Fig. 1 illustrates the basic methodology that is used in

research work. First step is the segmentation of input image

captured from camera to separate free space from obstacles.

Next step is the detection of corner points of obstacles and

these corner points serve as nodes for visibility graph

construction. Visibility graph provides all the possible paths

from start to goal point and then path planning algorithms

find the optimal path for robots to follow from start to goal

point. Detailed methodology is explained in the following

sub-sections.

3.1 Segmentation

The first step is to segment the image captured through

the camera to separate obstacles from free space. Fig. 2a

shows the input image. Obstacles are represented by light

green color in input image, robot by magenta color and

boundaries by dark green color. A common thresholding

approach was used and it performed quite well in desired

regions segmentation. The image obtained from the camera

is an RGB image as shown. Firstly RGB image is converted

to HSV image. After that in order to select the threshold

values for the three colors, any homogeneous part of the

image that only contains the required color is selected and

the maximum and minimum values of the intensity, hue,

and saturation are calculated from this region. These values

serve as the threshold values.

This selection of threshold values can be done every

time an image is obtained or preset threshold values

(obtained at the start from an image) can be used for

segmenting all the remaining images captured through the

camera. The former way is better in case when the

lightening conditions are varying a lot during the time

images are being captured. Due to this, the HSV values of

the pixels can change and effect the segmentation. On the

other hand, segmentation is not affected by small variations

in lightening conditions and fixed threshold values can be

set in the beginning. After selecting the threshold values,

checking of all the image pixels is done and if pixel HSV

values fall within the threshold values of any of the three

color classes, a specific value is assigned to that pixel and

consequently pixel is represented by unique color in the

output image as shown in Fig. 2b.

Alongwith the segmentation it is also important that

robot should not collide with the obstacles present in

environment. So, configuration space obstacle should also

be considered. Configuration space obstacle comprises of

robot configurations in which collision with obstacles can

occur. The robot is circular in current case and the robot

center is taken as a reference point. As a result sliding the

robot around the obstacles and curve traced by reference

point will provide the configuration space obstacle. An easy

way to achieve this configuration space is to dilate the

obstacles in image. Dilation adds the pixels to the boundary

of obstacles in the image. A structuring element is used to

define the way pixels that are going to be added. Curve

traced by robot around obstacles is circular so a disk shaped

structuring element can be used but in the current case,

dilation of the obstacles in image is done with a square

shaped structuring element in order to get the details related

to corners because these corner points are needed to build

visibility graph. In order to keep the robot at safe distance

from the obstacles, the number of pixels was multiplied

with a factor 1.5. So in this manner, the obstacles boundary

in the image was dilated. The corners of the obstacle will be

calculated by considering this virtual boundary. Thus when

the robot will follow the path to goal point, it will follow

these corner points i.e. nodes in the visibility graphand keep

itself at a safe distance from the original obstacles.

(a)

(b)

Fig. 2. (a) Original image, (b) result obtained after segmentation.

Input Images

Segmentation of input
images

Corner detection of
obstacles

visibilty graph
construction

path planning algorithms

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

400

3.2 Corner Detection

The next step is to detect the corners of the obstacles.

Curvature based edge detector [11] is used for corner

detection. Binary edge map is the output of the canny edge

detector. In case if there is only one obstacle in the image

then this means image will be having only one contour and

the points obtained through edge detection will represent

this contour. In multiple obstacles case, it is all the contours

are required to extract and to know which edge points

belong to which contour.

A duplicate image (BW1) is created for this purpose

from the original binary image (BW). Then all the edge

points (value=1) are extracted from this image. The first

edge point is selected which will be part of a contour in the

image. The value of this edge point is set to zero in image

BW1 and this edge point is saved. Then 3×3 neighborhood

of this edge point is searched for more edge points. All the

points found in the neighborhood are then saved and 3×3

neighborhoods of these newly found points are searched. In

this manner the boundary of contour is traced by searching

the neighborhoods of edge points on contour until all the

edge points on a contour have been explored. The edge

points of this contour are then saved and let it be contour 1.

Zero value has been given to all these edge points in the

search image (BW1) so that these are not selected again. In

other words, the contour that has been searched is removed

from the image. Then using the same procedure, selection

of an edge point of one of remaining contour will be made

and then all edge points of this contour will be saved. In

this manner, this procedure goes on until the edge points on

all contours have been extracted. The stored edge points

basically provide the x and y coordinates of the pixels that

lie on the contours. Smoothing of these edge points is then

performed using a Gaussian function with σ = 3 [11].

After the contours have been obtained, the next step is

the calculation of the curvature value of pixel of each

contour. The curvature value for an edge point will be

lower as compared to that of a corner point. The formula

for calculation of curvature is

𝐾𝑖
𝑗

=
𝛥𝑥𝑖

𝑗
𝛥2𝑦𝑖

𝑗
−𝛥2𝑥𝑖

𝑗
𝛥𝑦𝑖

𝑗

 (𝛥𝑥
𝑖
𝑗

)2+ (𝛥𝑦
𝑖
𝑗

)2
1.5 for i = 1,2, … , N (1)

Where 𝑥𝑖
𝑗
 and 𝑦𝑖

𝑗
are the coordinates of i

th
 pixel on j

th

contour. 𝛥𝑥𝑖
𝑗

=
𝑥𝑖+1

𝑗
−𝑥𝑖−1

𝑗

2
 , 𝛥𝑦𝑖

𝑗
=

𝑦𝑖+1
𝑗

−𝑦𝑖−1
𝑗

2
 , 𝛥2𝑥𝑖

𝑗
=

𝛥𝑥𝑖+1
𝑗

−𝛥𝑥𝑖−1
𝑗

2
 and 𝛥2𝑦𝑖

𝑗
=

𝛥𝑦𝑖+1
𝑗

−𝛥𝑦𝑖−1
𝑗

2
 .

By using above equation, all the local maxima of the

curvature function will give us the initial list of corner

candidates [11].

3.3 Visibility Graph

A visibility graph is constructed using initial and goal

locations and the corner points calculated in previous step

and. Before moving to the next step i.e. construction of

visibility graph, the convex hull of the obstacles is

calculated. The convex hull of a geometric object (such as a

polygon or a point set) is the smallest set of points

containing that object. The reason for generating convex

hull is that the robot will always follow an optimal path to

reach the destination. Equation for calculating convex hull

[22] is given as:

𝐾𝑗
𝑖 = 𝐾𝑗−1 × 𝑥𝑖 ∪ 𝑦 (2)

In order to reduce the computational time, a technique

was implemented termed as D.T Lee's rotational plane

sweep algorithm [20]. This technique was found in most of

the literature regarding the visibility graph and is

considered as a very accurate technique. Fig. 3 represents

the final result of rotational plane sweep algorithm after

corner detection of obstacles shown in test image of

Fig. 2a.

The implementation of whole algorithm in this research

work is done in a way that first visibility among the vertices

of all the obstacles is checked and then visibility from the

start and goal location is checked.

Fig. 3. Visibility graph construction.

3.4 Path Planning

The visibility graph gives us all the possible paths that

robot can follow to reach the goal point. The next task is to

find the optimal path i.e. shortest path among all these

possible paths.

For this purpose following three algorithms are used.

3.4.1 Uniform Cost Search Algorithm

The start point, vertices of the obstacle and goal point

are represented by nodes of the visibility graph and lines

which are used to join them represent all possible paths.

The search begins at the start node. The algorithm

continues its search by exploring the next node which has

the least cost from the start node. Nodes are visited in this

manner until a goal state is reached. Cost is represented by

g(n) and it is calculated by computing the distances to reach

from one node to other.

http://en.wikipedia.org/wiki/Node_%28computer_science%29

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

 401

The start node starts this algorithm and priority queue of

the nodes to be visited alongwith their costs (value of g (n))

are also maintained. This priority queue is termed as “open

list”. Another list called “closed list” is also used. Closed

list includes the nodes that have been visited and it also

holds the back pointer to the visited node. This back pointer

points to the node (parent node) from which visited node

originated.

At each iteration, from the open list, a promising node

(one with lowest g (n) value) is selected. The successor

nodes of the current node are determined and are then

added to the open list if these successor nodes have not

been visited yet. The current node alongwith its back

pointer is removed from the open list and then this node and

its pointer is added to the closed list. In this manner the

algorithm repeats this process of exploring until the

destination i.e. goal node is reached or the open list

becomes empty. The path is then traced through back

pointers starting from the back pointer to goal node and

then chaining back until the first point i.e. start node is

reached as shown in Fig. 4. Green line represents the path

followed by robot.

Fig. 4 UCS algorithm output. Green point indicates the start point and

red point indicates the goal point and green line indicates the

path.

3.4.2 Greedy Search Algorithm

A heuristic estimate is introduced in this search and it is

given by h (n). The heuristic estimate (h (n)) is the straight

line distance between the nodes and goal point assuming no

obstacles exist between the given node and goal node and

given as:

ℎ = (xa − xb)
2 + (ya − yb)

2 (3)

Where x and y are the coordinates of two nodes a and b.

The search continues by visiting the next node which has

the least value of h (n). Nodes are visited in this manner

until a goal state is reached.

The start node starts this algorithm and priority queue of

the nodes to be visited alongwith their heuristic estimates

are also maintained. This priority queue is termed as “open

list”. Another list called “closed list” is also used. Closed

list includes the nodes that have been visited and it also

holds the back pointer to the visited node. This back pointer

points to the node (parent node) from which visited node

originated.

At each iteration, from the open list, a promising node

(having least value of h (n)) is selected. The successor

nodes of the current node are determined and are then

added to the open list if these successor nodes have not

been visited yet. The current node along with its back

pointer is removed from the open list and then this node and

its pointer is added to the closed list. In this manner the

algorithm repeats this process of exploring until the

destination i.e. goal node is reached or the open list

becomes empty. The path is then traced through back

pointers starting from the back pointer to goal node and

then chaining back until the first point i.e. start node is

reached as shown in Fig. 5. Green line represents the final

path followed by robot.

Fig. 5. Greedy search algorithm output. Green point indicates the start

point and red point indicates the goal point and green line
indicates the path.

3.4.3 A* Algorithm

A* search is based on an evaluation function f (n) that

depends on the values of both these functions and its value

is given as:

f(n) = g(n) + h(n) (4)

The start node starts this A* algorithm and in this

algorithm priority queue of the nodes to be visited along

with their costs (value of f(n)) are also maintained. This

priority queue is termed as “open list”. Another list called

“closed list” is also used. Closed list includes the nodes that

have been visited and it also holds the back pointer to the

visited node. This back pointer points to the node (parent

node) from which visited node originated.

At each iteration, from the open list, a promising node

(one with lowest f(n) value) is selected. The successor

nodes of the current node are determined and are then

added to the open list if these successor nodes have not

been visited yet. The current node alongwith its back

pointer is removed from the open list and then this node and

its pointer is added to the closed list. In this manner the

algorithm repeats this process of exploring until the

destination i.e. goal node is reached or the open list

becomes empty. The path is then traced through back

pointers starting from the back pointer to goal node and

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

402

then chaining back until the first point as shown in

Fig. 6. Green line represents the final path followed by

robot.

Fig. 6. A* Algorithm output. Green point indicates the start point and red

point indicates the goal point and green line indicates the path.

Euclidean length of path is then calculated for each

algorithm. Length of path as well as execution time

obtained for A* algorithm is less as compared to greedy

search and UCS algorithm. So, both UCS and Greedy

search algorithms fails to provide optimal solution for the

test image shown in Fig. 2a but A* provides the shortest

path for robot to follow and to reach its destination

avoiding obstacles.

 (a) 1 obstacle (b) 3 obstacles

(c) 3a obstacles (d) 5a obstacles

(e) 4 obstacles (f) 5 obstacles

Fig. 7. Test images.

4. Experimental Results and Discussions

Six different test images are shown in Fig. 7 which are

used for experimentation. Results obtained after

segmentation are shown in Fig. 8. After corner detection the

visibility graph construction is shown in Fig. 9, where green

point indicates the start point and red point indicates the

goal point. Path planning algorithm results are shown in

Fig. 10 where red line indicates UCS output, yellow line

indicates Greedy Algorithm output and Green line indicates

A * algorithm output.

All the three algorithms used for path planning are

compared by varying no of obstacles. Table 1 and Table

2represent the performance of all the three techniques used

for computing shortest path. n is no of obstacles in test

images, N represents no and Y represents yes. These three

algorithms are evaluated on the basis of two main factors,

time complexity and whether they are able to compute

optimal solution or not. Euclidean length of path is a

decisive factor to find which algorithm provides optimal

solution. It can be seen in Table 1 that length of path

computed from A* is always less than UCS and Greedy

(a) 1obstacle (b) 3obstacles

(c) 3a obstacles (d) 5a obstacles

(e) 4 obstacles (f) 5 obstacles

Fig. 8. Segmented output.

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

 403

Search. Thus A* algorithm always provide optimal path for

robot to follow. In case when two algorithms compute same

path length then execution time is decisive factor to find

best solution for example first case shown in Table 1,

Greedy search and A* algorithms compute same path

length but execution time of A* is still less as compared to

greedy search algorithm. Thus A* is best solution.

(a) 1 obstacle (b) 3 obstacles

 (c) 3a obstacles (d) 5a obstacles

(e) 4 obstacles (f) 5 obstacles

Fig. 9. Visibility graph construction.

When images containing one obstacle and three

obstacles are used then A* and greedy search algorithms

both provides optimal solution but computation time of A*

is less as compared to UCS and Greedy Search algorithms

shown in Table 2. In case of image containing 4 obstacles

A* and UCS algorithms both provides optimal solution but

again execution time of A* algorithm is less. Thus A*

provides the optimal result for all the data set provided with

least computation time but other two algorithms fails

to do so.

A graph is shown in Fig. 11 that provides comparison of

execution time for all the three path algorithms used in

experiments. Green line indicates the time taken by A*

Algorithm, UCS and Greedy Search Algorithms are

represented by red and blue line respectively. It can be

noted from the graph that A* provides the optimal path for

robot in shortest time as its execution time is always less

than other two algorithms. So it is best suited for this

particular application. Time taken by other two algorithms

is almost similar but greater than computation time of A*

algorithm and they fail to provide optimal solution in most

cases.

 (a) 1obstacle (b) 3obstacles

 (c) 3a obstacles (d) 5a obstacles

 (e) 4 obstacles (f) 5 obstacles

Fig. 10. Output of path finding algorithms.

Table 1. Comparison of path lengths.

No.

No of

corners

detected

Length of path

Optimal Solution

 UCS
 Greedy

 search
 A* UCS

Greedy

search
A*

1 4 109.6 109.5 109.5 N Y Y

2 8 113.8 113.7 113.6 N N Y

3 6 110.3 110.1 110.1 N Y Y

3 12 122.0 122.0 122.0 Y Y Y

4 16 127.4 128.2 127.4 Y N Y

5 14 118.1 118.0 118.0 N Y Y

5 20 130.8 130.7 130.6 N N Y

H. Bashir and M.H. Yousaf / The Nucleus 51, No. 4 (2014) 397-404

404

Table 2. Comparison of execution time.

No.
No. of

Corners
Detected

Time(s)

UCS Greedy Search A*

1 4 0.832 0.854 0.798

2 8 1.001 1.011 0.994

3 6 0.874 0.877 0.766

3 12 1.447 1.458 1.398

4 16 2.285 2.295 2.123

5 14 1.878 1.986 1.532

5 20 2.310 2.327 2.212

Fig. 11. Graph showing the performance of path planning algorithms.

5. Conclusion

Execution time and path length both factors are very

important in real time implementation. All the three path

planning algorithms used in research are evaluated on the

basis of these two factors. After evaluation it is concluded

that A* algorithm is the one that provides optimal paths for

all the data set used in experimentation because it always

provide shortest length path for robot to follow in least

execution time as compared to UCS and Greedy search

algorithms that is why it is best suited for this particular

application. The robot then followed this path to arrive at

the required goal.

Future work may include D* algorithm implementation

for dynamic environments [21]. Structured or static

environment is assumed in research work i.e. the obstacles

are fixed. However, when there are moving obstacles in the

environment i.e. in case of dynamic environment,

re-planning of path after specific intervals is required so as

to know if any change occurred in the environment. D*

algorithm which is an extension of A*algorithm can be

implemented in that scenario.

References

[1] N. Padoy, T. Blum, A. Ahmadi, H. Feußner, M.O. Berger and

N. Navab, J. Med. Image Analysis 16 (2010) 632.

[2] M. V. Kreveld, M. de Berg and M. Overmars, Computational

Geometry: Algorithms and Applications, Springer, Berlin (1997).

[3] D. Dolgov, S. Thrun, M. Montemerlo and J. Diebel, Springer Tracts

in Advanced Robotics 54 (2009) 55.

[4] J.Reif, Complexity of the Mover's Problem and Generalizations,

Proc. of 20th Symp. on the Foundations of Computer Science (1979)
pp. 421–427.

[5] J. Bruce, T. Balch and Manuela Veloso, Fast and Inexpensive Color
Image Segmentation for Interactive Robots, Proc. of IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, Takamatsu (2000)

pp. 2061-2066.

[6] R. T. McKeon, M. Krishnan and M. Paulik, Obstacle Recognition

Using Region- Based Color Segmentation Techniques for Mobile
Robot Navigation, Proc. SPIE 6384, Intelligent Robots and

Computer Vision (2006) 63840R.

[7] M. Agrawal, A. Sundaresan, M.R. Blas and K. Konolige, Fast Color/

Texture Segmentation for Outdoor Robots, IEEE/RSJ Inter. Conf. on

Intelligent Robots and Systems (2008) pp. 22-26.

[8] A. Mishra, Y. Aloimonos, and C. Fermuller, Active Segmentation for

Robotics, IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems
(2009) pp. 3133-3139.

[9] C. Harris and M. Stephens, A Combined Corner and Edge Detector,
4th ALVEY Vision Conf.(1988) pp. 147-151.

[10] J.M.B. Susan and S.M. Smith, Inter. J. of Comp. Vision 23 (1997)
45.

[11] X. C. He and N. H. C. Yung, Optical Engg.47 (2008) 5.

[12] A. Rattarangsi and R. T. Chin, IEEE Trans. Pattern Anal. Mach.

Intell. 14 (1992) 430.

[13] J. Canny, Artificial Intelligence 37 (1988) 203.

[14] S.R. Lindemann and S.M. LaValle, Incremental Low-Discrepancy

Lattice Methods for Motion Planning, IEEE Inter. Conf. on Robotics
and Automation (2003) pp. 2920-2927.

[15] M.H. Overmars and E. Welzl, New Methods for Computing
Visibility Graphs, 4th Annual Symp.on Computational Geometry,

New York, NY, USA (1988) pp. 164-171.

[16] S. K. Ghosh and D.M. Mount, SIAM Journal on Computing 20

(1991) 888.

[17] H. Choset, Sensor Based Motion Planning: The Hierarchical

Generalized Voronoi Graph, Ph.D Thesis, California Institute of

Technology (1996).

[18] F.P. Preparata and M.I. Shamos, Computational Geometry:

An Introduction, Springer-Verlag (1985).

[19] A.A. Rizzi, P. Atkar, E. U. Acar, H. Choset and D. Hull, Inter.

J. of Robotics Res. 21 (2002) 331.

[20] P. E. Hart, N. J. Nilsson and B. Raphael, SIGART Bulletin 37 (1972)

28.

[21] A. Stentz, The focused D* Algorithm for Real-time Re-planning,

14th Inter. Joint Conf. on Artificial intelligence, San Francisco, CA,
USA (1995) pp. 1652-1659.

http://link.springer.com/search?facet-author=%22Dmitri+Dolgov%22
http://link.springer.com/search?facet-author=%22Sebastian+Thrun%22
http://link.springer.com/search?facet-author=%22Michael+Montemerlo%22
http://link.springer.com/search?facet-author=%22James+Diebel%22
http://link.springer.com/bookseries/5208
http://link.springer.com/bookseries/5208

