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A B S T R A C T 

To determine a collision free path for a robot between start and goal positions in an environment 

filled with obstacles is a very challenging task in the design of an autonomous robot path planning. 
This paper aims to select an optimal path planning algorithm for a mobile robot in structured 

environment. To achieve the goal, comprehensive strengths and weaknesses of different path 

planning algorithm are discussed and evaluated. A wooden box with some fixed obstacles and robot 
inside it is basically the environment. Information about the environment is used to build a roadmap 

or graph of the environment. After getting a convenient representation of the environment, then 

graph search methods can be used to obtain shortest possible path through this roadmap. It is well 
known that computing shortest paths for autonomous robots is an important task in many path 

planning applications.  Selecting a suitable algorithm from the various algorithms reported in the 

literature is a decisive step in many applications including path planning task.  A set of three shortest 
path algorithms that compute optimal path from start to goal location has been identified and these 

are Uniform Cost Search, Greedy Search and A* algorithm. After comparing execution time and path 

length of path computed by these three algorithms, A * algorithm proves to be best suited for this 

particular application of path planning. 

 

1. Introduction 

Robot path planning or motion planning can be 

classified as a class of algorithms that accept high level 

description tasks and generate valid and accurate path 

combinations for the robot to follow. In simple words, path 

planning can be taken as a task in which the robot, whether 

it is a mobile robot has to navigate from its start point to a 

specific destination or goal point by preventing collisions 

with the obstacles in its way. Path planning has helped to 

solve a huge number of problems in the modern world. 

Surgical planning [1], automation, animation of digital 

characters [2], autonomy, mapping of unexplored 

environments and drug design [3] are some of the major 

applications of path planning. 

Piano mover's problem [4] is one of the traditional 

version of path planning in which a path planning algorithm 

accepts a piano and a precisely computer aided designed 

house as input. The algorithm then has to compute a path 

for moving the piano from one location to another location 

inside the house avoiding collisions with the walls of the 

house and with the obstacles. In this case the obstacles are 

assumed to be fixed and their exact locations are known. 

Thus an accurate path can be planned from start location to 

goal location. Planning is done before execution that’s why 

termed as off line path planning. Another case can be when 

the environment is dynamic and robot comes across an 

obstacle in its path from start to goal. In that case, 

re-planning of path is required. So this type of planning is 

called as on line path planning and is common in outdoor 

scenes and unstructured environments. 

First step is always to identify obstacles so segmentation 

is very important phase of path planning. Different 

segmentation techniques are used in the field of robotics 

depending on the requirement of application. Researchers 

have used threshold based methods [5] for image 

segmentation in structured environments, when the goal is 

to identify few objects based on their color properties. This 

is case where specific colors are assigned to the objects in 

the environment. 

Then, region based segmentation [6] for object 

recognition has also been used by the researchers. For 

unstructured environments, a segmentation technique, 

proposed by Sundaresan and Konolige, which combines 

both texture and color information [7] has been used. In 

case of indoor environments, another technique has also 

been proposed by the researchers, in which the robot will 

fixate at various points in the scene and then perform the 

segmentation of the object containing the fixation point [8]. 

Segmentation provides the location of obstacles then 

corner points of these obstacles must be detected in order to 

create visibility graph. Various corner detection techniques 

exist in literature. Harris corner detector [9] is one of the 

popular corner detector techniques and it is based on the 
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signal local auto correlation function where this function 

calculates the local changes of the signal with patches that 

are shifted in different directions by small amount. Susan 

[10] another detector proposed by Smith and Brady which 

uses a circular mask for edge and corner detection. A 

technique is proposed in [11], in which the total curvature 

of the gray level image is directly proportional to the 

second-order directional derivative in the direction to edge 

normal and curvature is inversely proportional to the 

strength of edge. A multi scale algorithm has been proposed 

by Rattarangsi and Chin [12] that is based on curvature 

scale space (CSS) which helps in corner detection of planar 

curves. Corner detector based on local and global curvature 

properties [13] is another technique which detects both fine 

and coarse features precisely at low computational cost. 

After corner detection, obstacles are identified so it 

makes sense to first obtain a data structure i.e. a graph or 

map of the environment and searching algorithm then uses 

this information to find the optimal path. So, it is required 

to build a graph or map of the environment before 

implementation of any path planning algorithm. Road maps 

are included among the various classes of topological maps 

[14, 15]. These are basically graph like structures in which 

edges represent adjacency relationship between the nodes 

and nodes represent some distinguished features. Another 

prominent technique is one proposed in [16] in which they 

use the concept of rotation trees. After that, another 

technique proposed by Ghosh and Mount [17] in which 

they introduced a planar scan technique using funnel and 

triangulation splits to achieve running time of O 

(e+nlogn).Another popular technique for generating a 

roadmap is Voronoi diagram [18]. 

In road map techniques, another notable technique used 

by researchers is cell decomposition technique. Cellde 

composition methods present another mean of representing 

the free space of environment. Notable exact cell 

decomposition techniques include the trapezoidal 

decomposition technique [19] which basically depends on 

the polygonal representation of the configuration space. 

Moarse decomposition [20] is another method which 

belongs to a general class of exact cell decomposition and 

is used for non planar configuration spaces and non 

polygonal obstacles. 

The output of these methods is either a graph or a map 

containing the possible path combinations to reach the 

destination point from the start point. The two basic search 

algorithms are Depth-first and Breadth-first algorithms [2]. 

Dijkstra's algorithm is a type of breadth first search 

algorithm conceived by Dutch computer scientist Edsger 

Dijkstra’s in 1959. Uniform-cost search (UCS) is a tree 

search algorithm used for searching a tree structure, 

weighted tree, or graph to find optimal path. Best first 

search algorithm is a greedy algorithm which optimizes the 

breadth first search in a way that it has some heuristic 

estimate of distance of a node from the destination. A* is a 

very well-known algorithm developed by Hart et al. [20]. It 

is an extension of Dijkstra's algorithm that tries to minimize 

the number of nodes to be explored by incorporating in its 

search, the heuristic estimate of the cost to get to the 

destination node from a given node. So it is combination of 

both best first search and Dijkstra's algorithm. 

Some motivational examples are used to show the need 

for studying the path planning algorithms. Path planning 

algorithms have widespread success and usage in the field 

of automation, mobile robotics, aerospace applications and 

manufacturing. Progress in these fields regarding the path 

planning indicates much more fascinating applications in 

coming years. Some of the path planning applications 

includes: 

 Toyota Humanoid robot that works by planning the 

path in order to grasp specific objects avoiding the 

obstacles in its way. 

 'Opportunity' robot that is sent by NASA on Mars for 

research purposes. In order to maneuver itself on the 

planet, the robot combines vision with path planning to 

avoid the obstacles. 

2.  Problem Statement 

Automatic path planning for autonomous robots is a 

very challenging task. Generating optimal paths for 

autonomous robots is one of the difficult topics in mobile 

robotics applications. The environments in which the robots 

work can be structured or unstructured. Cameras are used 

mostly to sense environment which is structured in this 

particular case as obstacles are fixed and no re-planning is 

needed. Once the information about the environment is 

known, then next step is to build a roadmap or graph of the 

environment. For building the roadmaps, Different 

algorithms usually exist in this field of path planning. After 

a convenient representation of the environment is obtained, 

then graph search methods can be used to find the optimal 

paths through this roadmap. 

It is well known that computing shortest paths for 

autonomous robots is an important task in many path 

planning applications.  Selecting a suitable algorithm from 

the various algorithms reported in the literature is a decisive 

step in many applications including path planning task.  A 

set of three shortest path algorithms that compute optimal 

path from start to goal location has been identified.  These 

three algorithms are:1) Uniform Cost Search 2) Greedy 

Search Algorithm 3) A* Search Algorithm [2] and then 

performance evaluation of these algorithms is also a 

challenging task. 

 

http://en.wikipedia.org/wiki/Tree_search_algorithm
http://en.wikipedia.org/wiki/Tree_search_algorithm
http://en.wikipedia.org/wiki/Tree_search_algorithm
http://en.wikipedia.org/wiki/Tree_structure
http://en.wikipedia.org/wiki/Weighted
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Graph_%28data_structure%29
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3. Proposed Methodology 

 

 

Fig. 1.    Proposed methodology. 

Fig. 1 illustrates the basic methodology that is used in 

research work. First step is the segmentation of input image 

captured from camera to separate free space from obstacles. 

Next step is the detection of corner points of obstacles and 

these corner points serve as nodes for visibility graph 

construction. Visibility graph provides all the possible paths 

from start to goal point and then path planning algorithms 

find the optimal path for robots to follow from start to goal 

point. Detailed methodology is explained in the following 

sub-sections. 

3.1 Segmentation 

The first step is to segment the image captured through 

the camera to separate obstacles from free space. Fig. 2a 

shows the input image. Obstacles are represented by light 

green color in input image, robot by magenta color and 

boundaries by dark green color. A common thresholding 

approach was used and it performed quite well in desired 

regions segmentation. The image obtained from the camera 

is an RGB image as shown. Firstly RGB image is converted 

to HSV image. After that in order to select the threshold 

values for the three colors, any homogeneous part of the 

image that only contains the required color is selected and 

the maximum and minimum values of the intensity, hue, 

and saturation are calculated from this region. These values 

serve as the threshold values. 

This selection of threshold values can be done every 

time an image is obtained or preset threshold values 

(obtained at the start from an image) can be used for 

segmenting all the remaining images captured through the 

camera. The former way is better in case when the 

lightening conditions are varying a lot during the time 

images are being captured. Due to this, the HSV values of 

the pixels can change and effect the segmentation. On the 

other hand, segmentation is not affected by small variations 

in lightening conditions and fixed threshold values can be 

set in the beginning. After selecting the threshold values, 

checking of all the image pixels is done and if pixel HSV 

values fall within the threshold values of any of the three 

color classes, a specific value is assigned to that pixel and 

consequently pixel is represented by unique color in the 

output image as shown in Fig. 2b. 

Alongwith the segmentation it is also important that 

robot should not collide with the obstacles present in 

environment. So, configuration space obstacle should also 

be considered. Configuration space obstacle comprises of 

robot configurations in which collision with obstacles can 

occur. The robot is circular in current case and the robot 

center is taken as a reference point. As a result sliding the 

robot around the obstacles and curve traced by reference 

point will provide the configuration space obstacle. An easy 

way to achieve this configuration space is to dilate the 

obstacles in image. Dilation adds the pixels to the boundary 

of obstacles in the image. A structuring element is used to 

define the way pixels that are going to be added. Curve 

traced by robot around obstacles is circular so a disk shaped 

structuring element can be used but in the current case, 

dilation of the obstacles in image is done with a square 

shaped structuring element in order to get the details related 

to corners because these corner points are needed to build 

visibility graph. In order to keep the robot at safe distance 

from the obstacles, the number of pixels was multiplied 

with a factor 1.5. So in this manner, the obstacles boundary 

in the image was dilated. The corners of the obstacle will be 

calculated by considering this virtual boundary. Thus when 

the robot will follow the path to goal point, it will follow 

these corner points i.e. nodes in the visibility graphand keep 

itself at a safe distance from the original obstacles. 

 

(a) 

 

(b) 

Fig. 2.   (a) Original image, (b) result obtained after segmentation. 

Input Images

Segmentation of input 
images 

Corner detection of 
obstacles

visibilty graph 
construction

path planning algorithms
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3.2 Corner Detection 

The next step is to detect the corners of the obstacles. 

Curvature based edge detector [11] is used for corner 

detection. Binary edge map is the output of the canny edge 

detector. In case if there is only one obstacle in the image 

then this means image will be having only one contour and 

the points obtained through edge detection will represent 

this contour. In multiple obstacles case, it is all the contours 

are required to extract and to know which edge points 

belong to which contour. 

A duplicate image (BW1) is created for this purpose 

from the original binary image (BW). Then all the edge 

points (value=1) are extracted from this image. The first 

edge point is selected which will be part of a contour in the 

image. The value of this edge point is set to zero in image 

BW1 and this edge point is saved. Then 3×3 neighborhood 

of this edge point is searched for more edge points. All the 

points found in the neighborhood are then saved and 3×3 

neighborhoods of these newly found points are searched. In 

this manner the boundary of contour is traced by searching 

the neighborhoods of edge points on contour until all the 

edge points on a contour have been explored. The edge 

points of this contour are then saved and let it be contour 1. 

Zero value has been given to all these edge points in the 

search image (BW1) so that these are not selected again. In 

other words, the contour that has been searched is removed 

from the image. Then using the same procedure, selection 

of an edge point of one of remaining contour will be made 

and then all edge points of this contour will be saved. In 

this manner, this procedure goes on until the edge points on 

all contours have been extracted. The stored edge points 

basically provide the x and y coordinates of the pixels that 

lie on the contours. Smoothing of these edge points is then 

performed using a Gaussian function with σ = 3 [11]. 

After the contours have been obtained, the next step is 

the calculation of the curvature value of pixel of each 

contour. The curvature value for an edge point will be 

lower as compared to that of a corner point. The formula 

for calculation of curvature is 

𝐾𝑖
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=
𝛥𝑥𝑖
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By using above equation, all the local maxima of the 

curvature function will give us the initial list of corner 

candidates [11]. 

3.3 Visibility Graph 

A visibility graph is constructed using initial and goal 

locations and the corner points calculated in previous step 

and. Before moving to the next step i.e. construction of 

visibility graph, the convex hull of the obstacles is 

calculated. The convex hull of a geometric object (such as a 

polygon or a point set) is the smallest set of points 

containing that object. The reason for generating convex 

hull is that the robot will always follow an optimal path to 

reach the destination. Equation for calculating convex hull 

[22] is given as:  

𝐾𝑗
𝑖 =  𝐾𝑗−1  × 𝑥𝑖  ∪ 𝑦            (2) 

In order to reduce the computational time, a technique 

was implemented termed as D.T Lee's rotational plane 

sweep algorithm [20]. This technique was found in most of 

the literature regarding the visibility graph and is 

considered as a very accurate technique. Fig. 3 represents 

the final result of rotational plane sweep algorithm after 

corner detection of obstacles shown in test image of 

Fig. 2a. 

The implementation of whole algorithm in this research 

work is done in a way that first visibility among the vertices 

of all the obstacles is checked and then visibility from the 

start and goal location is checked. 

 

Fig. 3. Visibility graph construction. 

3.4 Path Planning 

The visibility graph gives us all the possible paths that 

robot can follow to reach the goal point. The next task is to 

find the optimal path i.e. shortest path among all these 

possible paths.  

For this purpose following three algorithms are used. 

3.4.1 Uniform Cost Search Algorithm 

The start point, vertices of the obstacle and goal point 

are represented by nodes of the visibility graph and lines 

which are used to join them represent all possible paths. 

The search begins at the start node. The algorithm 

continues its search by exploring the next node which has 

the least cost from the start node. Nodes are visited in this 

manner until a goal state is reached. Cost is represented by 

g(n) and it is calculated by computing the distances to reach 

from one node to other. 

http://en.wikipedia.org/wiki/Node_%28computer_science%29
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The start node starts this algorithm and priority queue of 

the nodes to be visited alongwith their costs (value of g (n)) 

are also maintained. This priority queue is termed as “open 

list”. Another list called “closed list” is also used. Closed 

list includes the nodes that have been visited and it also 

holds the back pointer to the visited node. This back pointer 

points to the node (parent node) from which visited node 

originated.  

At each iteration, from the open list, a promising node 

(one with lowest g (n) value) is selected. The successor 

nodes of the current node are determined and are then 

added to the open list if these successor nodes have not 

been visited yet. The current node alongwith its back 

pointer is removed from the open list and then this node and 

its pointer is added to the closed list. In this manner the 

algorithm repeats this process of exploring until the 

destination i.e. goal node is reached or the open list 

becomes empty. The path is then traced through back 

pointers starting from the back pointer to goal node and 

then chaining back until the first point i.e. start node is 

reached as shown in Fig. 4. Green line represents the path 

followed by robot. 

 

Fig. 4 UCS algorithm output. Green point indicates the start point and 

red point indicates the goal point and green line indicates the 

path. 

3.4.2 Greedy Search Algorithm 

A heuristic estimate is introduced in this search and it is 

given by h (n). The heuristic estimate (h (n)) is the straight 

line distance between the nodes and goal point assuming no 

obstacles exist between the given node and goal node and 

given as: 

ℎ =  (xa − xb )
2 + (ya − yb )

2   (3) 

Where x and y are the coordinates of two nodes a and b. 

The search continues by visiting the next node which has 

the least value of h (n). Nodes are visited in this manner 

until a goal state is reached.  

The start node starts this algorithm and priority queue of 

the nodes to be visited alongwith their heuristic estimates 

are also maintained. This priority queue is termed as “open 

list”. Another list called “closed list” is also used. Closed 

list includes the nodes that have been visited and it also 

holds the back pointer to the visited node. This back pointer 

points to the node (parent node) from which visited node 

originated.  

At each iteration, from the open list, a promising node 

(having least value of h (n)) is selected. The successor 

nodes of the current node are determined and are then 

added to the open list if these successor nodes have not 

been visited yet. The current node along with its back 

pointer is removed from the open list and then this node and 

its pointer is added to the closed list. In this manner the 

algorithm repeats this process of exploring until the 

destination i.e. goal node is reached or the open list 

becomes empty. The path is then traced through back 

pointers starting from the back pointer to goal node and 

then chaining back until the first point i.e. start node is 

reached as shown in Fig. 5. Green line represents the final 

path followed by robot. 

 

Fig. 5. Greedy search algorithm output. Green point indicates the start 

point and red point indicates the goal point and green line 
indicates the path. 

3.4.3 A* Algorithm 

A* search is based on an evaluation function f (n) that 

depends on the values of both these functions  and its value 

is given as: 

f(n) = g(n) + h(n)   (4) 

The start node starts this A* algorithm and in this 

algorithm priority queue of the nodes to be visited along 

with their costs (value of f(n)) are also maintained. This 

priority queue is termed as “open list”. Another list called 

“closed list” is also used. Closed list includes the nodes that 

have been visited and it also holds the back pointer to the 

visited node. This back pointer points to the node (parent 

node) from which visited node originated. 

At each iteration, from the open list, a promising node 

(one with lowest f(n) value) is selected. The successor 

nodes of the current node are determined and are then 

added to the open list if these successor nodes have not 

been visited yet. The current node alongwith its back 

pointer is removed from the open list and then this node and 

its pointer is added to the closed list. In this manner the 

algorithm repeats this process of exploring until the 

destination i.e. goal node is reached or the open list 

becomes empty. The path is then traced through back 

pointers starting from the back pointer to goal node and 
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then chaining back until the first point as shown in 

Fig. 6. Green line represents the final path followed by 

robot. 

 

Fig. 6. A* Algorithm output. Green point indicates the start point and red 

point indicates the goal point and green line indicates the path. 

Euclidean length of path is then calculated for each 

algorithm. Length of path as well as execution time 

obtained for A* algorithm is less as compared to greedy 

search and UCS algorithm. So, both UCS and Greedy 

search algorithms fails to provide optimal solution for the 

test image shown in Fig. 2a but A* provides the shortest 

path for robot to follow and to reach its destination 

avoiding obstacles. 

 

   (a)  1 obstacle    (b) 3 obstacles 

 

(c) 3a obstacles   (d) 5a obstacles 

 

(e) 4 obstacles   (f) 5 obstacles 

Fig. 7.   Test images. 

4. Experimental Results and Discussions 

Six different test images are shown in Fig. 7 which are 

used for experimentation. Results obtained after 

segmentation are shown in Fig. 8. After corner detection the 

visibility graph construction is shown in Fig. 9, where green 

point indicates the start point and red point indicates the 

goal point. Path planning algorithm results are shown in 

Fig. 10 where red line indicates UCS output, yellow line 

indicates Greedy Algorithm output and Green line indicates 

A * algorithm output. 

All the three algorithms used for path planning are 

compared by varying no of obstacles. Table 1 and Table 

2represent the performance of all the three techniques used 

for computing shortest path. n is no of obstacles in test 

images, N represents no and Y represents yes. These three 

algorithms are evaluated on the basis of two main factors, 

time complexity and whether they are able to compute 

optimal solution or not. Euclidean length of path is a 

decisive factor to find which algorithm provides optimal 

solution. It can be seen in Table 1 that length of path 

computed  from  A*  is  always  less  than UCS and Greedy 

 
(a) 1obstacle            (b) 3obstacles 

 

 

(c) 3a obstacles                               (d) 5a obstacles 

 

 

(e) 4 obstacles                                (f) 5 obstacles 

Fig. 8.   Segmented output. 
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Search. Thus A* algorithm always provide optimal path for 

robot to follow. In case when two algorithms compute same 

path length then execution time is decisive factor to find 

best solution for example first case shown in Table 1, 

Greedy search and A* algorithms compute same path 

length but execution time of A* is still less as compared to 

greedy search algorithm. Thus A* is best solution. 

  

(a) 1 obstacle    (b) 3 obstacles 

 

 

 (c) 3a obstacles      (d) 5a obstacles 

 

(e) 4 obstacles      (f) 5 obstacles 

Fig. 9.    Visibility graph construction. 

When images containing one obstacle and three 

obstacles are used then A* and greedy search algorithms 

both provides optimal solution but computation time of A* 

is less as compared to UCS and Greedy Search algorithms 

shown in Table 2. In case of image containing 4 obstacles 

A* and UCS algorithms both provides optimal solution but 

again execution time of A* algorithm is less. Thus A* 

provides the optimal result for all the data set provided with 

least computation time but other two algorithms fails 

to do so. 

A graph is shown in Fig. 11 that provides comparison of 

execution time for all the three path algorithms used in 

experiments. Green line indicates the time taken by A* 

Algorithm, UCS and Greedy Search Algorithms are 

represented by red and blue line respectively. It can be 

noted from the graph that A* provides the optimal path for 

robot in shortest time as its execution time is always less 

than other two algorithms. So it is best suited for this 

particular application. Time taken by other two algorithms 

is almost similar but greater than computation time of A* 

algorithm and they fail to provide optimal solution in most 

cases. 

      
 

 (a) 1obstacle     (b) 3obstacles 

 

   

         (c) 3a obstacles       (d) 5a obstacles 
 

   
         (e) 4 obstacles     (f) 5 obstacles 

Fig. 10. Output of path finding algorithms. 

Table 1.    Comparison of path lengths. 

No. 

No of  

corners 

detected 

Length of path 

 
Optimal Solution 

 UCS 
 Greedy 

 search 
  A* UCS 

Greedy 

search 
A* 

1 4 109.6 109.5 109.5 N Y Y 

2 8 113.8 113.7 113.6 N N Y 

3 6 110.3 110.1 110.1 N Y Y 

3 12 122.0 122.0 122.0 Y Y Y 

4 16 127.4 128.2 127.4 Y N Y 

5 14 118.1 118.0 118.0 N Y Y 

5 20 130.8 130.7 130.6 N N Y 
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Table 2.   Comparison of execution time. 

No. 
No. of 

Corners 
Detected 

Time(s) 

UCS Greedy Search A* 

1 4 0.832 0.854 0.798 

2 8 1.001 1.011 0.994 

3 6 0.874 0.877 0.766 

3 12 1.447 1.458 1.398 

4 16 2.285 2.295 2.123 

5 14 1.878 1.986 1.532 

5 20 2.310 2.327 2.212 

 

 

Fig. 11. Graph showing the performance of path planning algorithms. 

5. Conclusion 

Execution time and path length both factors are very 

important in real time implementation. All the three path 

planning algorithms used in research are evaluated on the 

basis of these two factors. After evaluation it is concluded 

that A* algorithm is the one that provides optimal paths for 

all the data set used in experimentation because it always 

provide shortest length path for robot to follow in least 

execution time as compared to UCS and Greedy search 

algorithms that is why it is best suited for this particular 

application. The robot then followed this path to arrive at 

the required goal. 

Future work may include D* algorithm implementation 

for dynamic environments [21]. Structured or static 

environment is assumed in research work i.e. the obstacles 

are fixed. However, when there are moving obstacles in the 

environment i.e. in case of dynamic environment, 

re-planning of path after specific intervals is required so as 

to know if any change occurred in the environment. D* 

algorithm which is an extension of A*algorithm can be 

implemented in that scenario. 
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