ANALYTIC SOLUTION FOR PIPE FLOW OF AN OLDROYD 8-CONSTANT FLUID
Abstract
This paper investigates the pipe flow of an Oldroyd 8-constant fluid. The governing nonlinear equations are first modelled and then solved analytically by utilizing homotopy analysis method (HAM). The convergence of the developed series solution is established. The influence of the important parameters of interest is seen on velocity.References
T. Hayat, Y. Wang and K. Hutter, Int. J. Non-Linear Mech., 39 (2004) 1027.
C. Fetecau and C. Fetecau, Int. J. Eng. Sci., 44 (2006) 788.
C. Fetecau and C. Fetecau, Int. J. Non-Linear Mech., 40 (2005) 1214.
C. Fetecau and C. Fetecau, Int. J. Eng. Sci., 43 (2005) 781.
W. C. Tan and T. Masuoka, Int. J. Non-Linear Mech., 40 (2005) 515.
T. Hayat and M. Sajid, Int. J. Heat Mass Transf., 50 (2007) 75.
M. Sajid, T. Hayat and S. Asghar, Phys. Lett., A. 355 (2006) 18.
T. Hayat, M. Khan, M. Sajid and M. Ayub, J. Porous Media, 9 (2006) 709.
S. J. Liao, J. Fluid Mech., 488 (2003) 189.
H. Xu and S. J. Liao, J. Non-Newtonian Fluid Mech., 129 (2005) 46.
S. J. Liao, Beyond perturbation: introduction to homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press (2003).
S. J. Liao, Appl. Math. Comput., 147 (2004) 499.
T. Hayat, M. Khan and M. Ayub, J. Math. Anal. & Appl., 298 (2004) 225.
T. Hayat, M. Khan and S. Asghar, Acta Mech., 168 (2004) 213.
C. Yang and S. J. Liao, Comm. Non-linear Sci. Numer. Simul., 11 (2006) 83.
S. J. Liao, Int. J. Heat and Mass Transfer, 48 (2005) 2529.
S. J. Liao, Comm. Non-linear Sci. Numer. Simul., 11 (2006) 326.
Z. Abbas, M. Sajid and T. Hayat, Theor. Comput. Fluid Dyn., 20 (2006) 229.
T. Hayat, Z. Abbas and M. Sajid, Phys. Lett. A., 358 (2006) 396.
S. Abbasbandy, Phys. Lett. A., 360 (2006) 109.
S. P. Zhu, Qunatitative Finance, 6 (2006) 229.
S. P. Zhu, Anziam Journal, 47 (2006) 477.