Designing a Solar Fuel Device: Light-Harvesting Materials and Catalytic Modules for Artificial Leaf
Abstract
Solar energy driven catalytic water splitting process using efficient light-harvesting system and catalytic materials can be exploited to generate electrons and protons that can be utilized to make clean hydrogen as a simple renewable fuel. This scheme can also be combined with a CO2 reduction module to convert it into nonfossil and easily storable liquid energy carriers. This approach is very appropriate and attractive but the major obstacle in this pursuit is to develop state-of-the art catalytic modules (both for water oxidation and proton/CO2 reduction) and their synergistic interfacing with light-harvesting materials. Recently, there is a tremendous progress in the field of visible light responsive inorganic-oxide semiconductors and water oxidation electrocatalysts, aiming to build up a stand-alone solar to fuel conversion device, “The Artificial Leafâ€. Many molecular catalysts and nanoscale materials functionalized on the photoelectrode surfaces have been investigated to drive solar water oxidation reaction. Here we give a miniature account of the development of structural designs of solar fuel devices, and assembling of solar to chemical energy conversion system.References
References
K.S. Joya, Y. F. Joya, K. Ocakoglu and R. van de Krol, “Water
splitting catalysis and solar fuel devices: Artificial leaf on the
moveâ€, Angew. Chem. Int. Ed., vol. 52, pp.10426-10437, August
K.S. Joya, J. L. Vallés-Pardo, Y. F. Joya, T. Eisenmayer,
B. Thomas, F. Buda and H. J. M. de Groot, “Molecular catalytic
assemblies for electro-driven water splittingâ€, ChemPlusChem,
vol. 78, pp. 35-47, December 2012.
H. Dau, C. Limberg, T, Reier, M. Risch, S. Roggan and
P. Strasser, “The mechanism of water oxidation: from electrolysis
via homogeneous to biological catalysisâ€, ChemCatChem, vol. 2,
pp. 724-761, July 2010.
Z.F. Chen and T.J. Meyer, “Copper (II) catalysis of water
oxidationâ€, Angew. Chem. Int. Ed., vol. 52, pp. 700-703,
November 2012.
Z. Chen, P. Kang, M.-T. Zhang, B. R. Stoner and T. J. Meyer,
“Cu(II)/Cu(0) electrocatalyzed CO2 and H2O splittingâ€, Energy
Environ. Sci., vol. 6, pp. 813-817, Jan 2013.
A.S. Weingarten, R.V. Kazantsev, L.C. Palmer, M. McClendon,
A.R. Koltonow, A.P.S. Samuel, D.J. Kiebala, M.R. Wasielewski
and S.I. Stupp, “Self-assembling hydrogel scaffolds for photocatalytic hydrogen productionâ€, Nature Chem., vol. 6, pp. 964-970,
November 2014.
K.S. Joya and H.J. M. de Groot, “Biomimetic molecular water
splitting catalysts for hydrogen generationâ€, Int. J. Hydrogen
Energy, vol. 37, pp. 8787-8799, May 2012.
F. Yu, F. Li, B. Zhang, H. Li and L. Sun, “Efficient electrocatalytic
water oxidation by a copper oxide thin film in borate bufferâ€,
ACS Catal., vol. 5, pp. 627-630, December 2014.
G. Renger, “Mechanism of light induced water splitting in
Photosystem II of oxygen evolving photosynthetic organismsâ€,
Biochim. Biophys. Acta, vol. 1817, pp. 1164-1176, August 2012.
C. Röger, Y. Miloslavina, D. Brunner, A. R. Holzwarth and
F. Würthner, “Self-Assembled Zinc Chlorin Rod Antennae
Powered by Peripheral Light-Harvesting Chromophoresâ€, J. Am.
Chem. Soc., vol. 130, pp. 5929-5939, May 2008.
S. Sengupta and F. Würthner, “Chlorophyll J-aggregates: from
bioinspired dye stacks to nanotubes, liquid crystals and
biosupramolecular electronicsâ€, Acc. Chem. Res., vol. 46,
pp. 2498-2512, July 2013.
K. Ocakoglu, K.S. Joya, E. Harputlu, A. Tarnowska and
D.T. Gryko, “A nanoscale bio-inspired light-harvesting system
develop from self-assembled alkyl-functionalized metallochlorins
nano-aggregatesâ€, Nanoscale, vol. 6, pp. 9625-9631, April 2014.
M. de Respinis, K. S. Joya, H. J. M. De Groot, F. D’Souza, W. A.
Smith, R. van de Krol and B. Dam, “Solar water splitting
combining a BiVO4 light absorber with a Ru-based molecular
co-catalystâ€, J. Phys. Chem. C, vol. 119, pp. 7275-7281, March
A. Fujishima and K. Honda, “Electrochemical photolysis of water
at a semiconductor electrodeâ€, Nature, vol. 238, 37-38, July 1972.
W.J. Youngblood, S.-H.A. Lee, K. Maeda and T.E. Mallouk,
“Visible light water splitting using dye-sensitized oxide
semiconductorsâ€, Acc. Chem. Res., vol. 42, pp. 1966-1973,
November 2009.
C. Sanchez, K.D. Sieber and G.A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3â€, J. Electroanal. Chem.,
vol. 252, pp. 269-290, October 1988.
K.S. Joya, N. Morlanés, E. Maloney, V. Rodionov and
K. Takanabe, “Immobilization of a molecular cobalt electrocatalyst
by hydrophobic interaction with a hematite photoanode for highly
stable oxygen evolutionâ€, Chem. Commun. vol. 51, pp. 13481-
, July 2015.
K. Sivula, F.L. Formal and M. Gratzel, “Solar water splitting:
progress using hematite (α-Fe2O3) photoelectrodesâ€,
ChemSusChem, vol. 4, pp. 432-449, March 2011.
S.D. Tilley, M. Cornuz, K. Sivula and M. Gratzel, “Light-induced
water splitting with hematite: improved nanostructure and iridium
oxide catalysisâ€, Angew. Chem., Int. Ed., vol. 49, pp 6405-6408,
July, 2010.
G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tonga and Y. Li, “A
mechanistic study into the catalytic effect of Ni(OH)2 on hematite
for photoelectrochemical water oxidationâ€, Nanoscale, vol. 5,
pp. 4129-4133, March 2013.
S.C. Riha, B.M. Klahr, E.C. Tyo, S. Seifert, S. Vajda, M.J. Pellin,
T.W. Hamann and A.B.F. Martinson, “Atomic layer deposition of
a sub monolayer catalyst for the enhanced photoelectrochemical
performance of water oxidation with hematiteâ€, ACS Nano, vol. 7,
pp. 2396-2405, February 2013.
J.N. Nian, C.C. Hu and H. Teng, “Electrodeposited p-type Cu2O
for H2 evolution from photoelectrolysis of water under visible light
illuminationâ€, Int. J. Hydrogen Energ., vol. 33, pp. 2897-2903,
June 2008.
D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato,
T. Montini and E. Tondello, “The potential of supported Cu2O and
CuOnanosystems in photocatalytic H2 productionâ€, ChemSus
Chem, vol. 2, pp. 230-233, February 2009.
A. Paracchino, V. Laporte, K. Sivula, M. Grätzel and E. Thimsen,
“Highly active oxide photocathode for photoelectrochemical water
reductionâ€, Nature Mater., vol. 10, pp. 456-461, May 2011.
C. G. Morales-Guio1, S. D. Tilley, H. Vrubel, M. Grätzel and
X. Hu, “Hydrogen evolution from a copper(I) oxide photocathode
coated with an amorphous molybdenum sulphide catalystâ€,
Nat Commun., vol. 5, pp. 3059, January 2014.
Y. Chen, P.D. Tran, P. Boix, Y. Ren, S.Y. Chiam, Z.Li, K. Fu,
L.H. Wong and J. Barber, “Silicon decorated with amorphous
cobalt molybdenum sulfide catalyst as an efficient photocathode
for solar hydrogen generationâ€, ACS Nano., vol. 9, pp. 3829-3836,
April 2015.
M. B. Wilker, K. E. Shinopoulos, K. A. Brown, D. W. Mulder,
P. W. King and G. Dukovic, “Electron transfer kinetics in CdS
nanorod−[FeFe]-hydrogenase complexes and implications for
photochemical H2 generationâ€, J. Am. Chem. Soc., vol. 136,
pp. 4316-4324, February 2014.
C.-B. Li, Z.-J. Li, S. Yu, G.-X. Wang, F. Wang, Q.-Y. Meng,
B. Chen, K. Feng, C.-H. Tung and L.-Z. Wu, “Interface-directed
assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe
QDs for photosynthetic hydrogen evolution in waterâ€, Energy
Environ. Sci., vol. 6, pp. 2597-2602, July 2013.
Z.-J. Li, X.-B. Li, J.-J. Wang, S. Yu, C.-B. Li, C.-H. Tung and
L.-Z. Wu, “A robust “artificial catalyst†in situ formed from CdTe
QDs and inorganic cobalt salts for photocatalytic hydrogen
evolutionâ€, Energy Environ. Sci., vol. 6, pp. 465-469, November
M.D. Karkas, E.V. Johnston, O. Verho and B. Ã…kermark,
“Artificial photosynthesis: from nanosecond electron transfer to
catalytic water oxidationâ€, Acc. Chem., Res., vol. 47, pp. 100-111,
August 2013.
D.G.H. Hetterscheid and J.N.H. Reek, “Mononuclear Water
Oxidation Catalystsâ€, Angew. Chem. Int. Ed., vol. 51, pp. 9740-
, August 2012.
K.S. Joya and H.J. M. de Groot, “Artificial leaf goes simpler and
more efficient for solar fuel generationâ€, ChemSusChem, vol. 7,
pp. 73-76, January 2014.
M.J. Kenney, M. Gong, Y. Li, J.n Z. Wu, J. Feng, M. Lanza and
H. Dai, “High-performance silicon photoanodes passivated with
ultrathin nickel films for water oxidationâ€, Science, vol. 342,
pp. 836-840, November 2013.
M.W. Kanan and D.G. Nocera, “In situ formation of an oxygenevolving catalyst in neutral water containing phosphate and Co2+â€,
Science, vol. 321, pp. 1072-1075, August 2008.
C.C.L. McCrory, S. Jung, J.C. Peters and T.F. Jaramillo, “Bench
marking heterogeneous electrocatalysts for the oxygen evolution
reactionâ€, J. Am. Chem. Soc., vol. 135, pp. 16977-16987, October
K.S. Joya, N.K. Subbaiyan, F. D’Souza and H.J. M. de Groot,
“Surface-immobilized single-site iridium complexes for electro
catalytic water splittingâ€, Angew. Chem. Int. Ed., vol. 51,
pp. 9601-9605, August 2012.
W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich
and Y. Shao-Horn, “Toward the rational design of non-precious
transition metal oxides for oxygen electrocatalysisâ€, Energy
Environ. Sci., vol. 8, pp. 1404-1427, March 2015.
M. Dincă, Y. Surendranath, D.G. Nocera, “Nickel-borate oxygenevolving catalyst that functions under benign conditionsâ€, Proc.
Natl. Acad. Sci. U.S.A., vol. 107, pp. 10337-10341, January 2010.
K.L. Pickrahn, S.W. Park, Y. Gorlin, H.-B.-R. Lee, T.F. Jaramillo
and S.F. Bent, “Active MnOx electrocatalysts prepared by atomic
layer deposition for oxygen evolution and oxygen reduction
reactionsâ€, Adv. Energy Mater., vol. 2, pp. 1269-1277, June 2012.
K.S. Joya, Y.F. Joya and H.J. M.de Groot, “Ni-based electro
catalyst for water oxidation developed in-situ in a HCO3
−
/CO2
system at near-neutral pHâ€, Adv. Energy Mater., vol. 4,
pp. 1301929, June 2014.
K.S. Joya, K. Takanabe and H.J.M. de Groot, “Surface generation
of a cobalt-derived water oxidation electrocatalyst developed in a
neutral HCO3
−
/CO2 systemâ€, Adv. Energy Mater., vol. 4,
pp. 1400252. November 2014.
T. Reier, M. Oezaslan and P. Strasser, “Electrocatalytic oxygen
evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative
study of nanoparticles and bulk materialsâ€, ACS Catal., vol. 2,
pp. 1765-1772, July 2012.
C. G. Morales-Guio, L.-A. Stern and X. Hu, Nanostructured hydro
treating catalysts for electrochemical hydrogen evolutionâ€, Chem.
Soc. Rev., vol. 43, pp. 6555-6569, December 2013.
D.H. Pool, M.P. Stewart, M. O’Hagan, W.J. Shaw, J.A.S. Roberts,
R.M. Bullock and D.L. DuBois, “Acidic ionic liquid/water solution
as both medium and proton source for electrocatalytic H2 evolution
by [Ni(P2N2)2]
+ complexesâ€, Proc. Natl. Acad. Sci. U.S.A.,
vol. 109, pp. 15634-15639, September 2012.
G. Sneddon, A. Greenaway and H.H. P. Yiu, “The potential
applications of nanoporous materials for the adsorption, separation,
and catalytic conversion of carbon dioxideâ€, Adv. Energy Mater.,
vol. 4, pp. 1301873, January 2014.
J. Newman, P. G. Hoertz, C. F. Bonino and J. A. Trainham,
“Review: An economic perspective on liquid solar fuelsâ€, J.
Electrochem. Soc., vol. 159, pp. A1722-A1729, August 2012.
R.F. Service, “Turning over a new leafâ€, Science, vol. 334,
pp. 925-927, November 2011.
R.E. Rocheleau, E.L. Miller and A. Misra, “High-efficiency photo
electrochemical hydrogen production using multijunction
amorphous silicon photoelectrodesâ€, Energy & Fuels, vol. 12,
pp. 3–10, January 1998.
S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein,
J.J.H. Pijpers and D.G. Nocera, Wireless solar water splitting using
silicon-based semiconductors and earth-abundant catalystsâ€,
Science, vol. 334, pp. 645-648. November 2011.
S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and
H. Tributsch, “Efficient solar water splitting, exemplified by
RuO2-catalyzed AlGaAs/Si photoelectrolysisâ€, J. Phys. Chem. B,
vol. 104, pp. 8920-8924, September 2000.
O. Khaselev and J. A. Turner, “A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water
splittingâ€, Science, vol. 280, pp. 425-427, April 1998.
J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin,
N.G. Park, S.D. Tilley, H.J. Fan and M. Gratzel, “Water photolysis
at 12.3% efficiency via perovskite photovoltaics and earthabundant catalystsâ€, Science, vol. 345, pp. 1593-1596, August
R. van de Krol, Y. Q. Liang, J. Schoonman, “Solar hydrogen
production with nanostructured metal oxidesâ€, J. Mater. Chem.,
vol. 18, pp. 2311-2320, March 2008.
I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao,
T.F. Jaramillo, X.L. Zheng, “Branched TiO2 nanorods for
photoelectro-chemical hydrogen productionâ€, Nano Lett., vol. 11,
pp. 4978-4984, October 2011.
S.W. Boettcher, J.M. Spurgeon, M.C. Putnam, E.L. Warren,
D.B. Turner-Evans, M.D. Kelzenberg, J.R. Maiolo, H. A. Atwater
and N.S. Lewis, “Energy-conversion properties of vapor-liquidsolid-grown silicon wire-array photocathodesâ€, Science, vol. 327,
pp. 185-187, January 2010.
J. M. Spurgeon, M. G. Walter, J. F. Zhou, P. A. Kohl and N. S.
Lewis, “Electrical conductivity, ionic conductivity, optical
absorption, and gas separation properties of ionically conductive
polymer membranes embedded with Si microwire arraysâ€, Energy
Environ. Sci., vol. 4, pp. 1772-1780, Mrach 2011.
J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg,
B.S. Brunschwig, H.A. Atwater and N.S. Lewis, “Flexible,
polymer-supported, Si wire array photoelectrodesâ€, Adv. Mater.,
vol. 22, pp. 3277-3281, June 2010.
S.L. McFarlane, B.A. Day, K. McEleney, M.S. Freund and
N.S. Lewis, “Designing electronic/ionic conducting membranes for
artificial photosynthesisâ€, Energy Environ. Sci., vol. 4, pp. 1700-
, January 2011.