Heat and Mass Transfer Over an Unsteady Stretching Permeable Surface with Non-Uniform Heat Source/Sink and Thermal Radiation

Authors

  • M. Aurangzaib Department of Mathematical Sciences, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Pakistan
  • S. M. Murshid Department of Mathematical Sciences, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Pakistan
  • S. A. Urooj Department of Mathematical Sciences, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi, Pakistan

Abstract

In this study an analysis has been done to investigate the combined effects of heat and mass transfer over an unsteady stretching permeable surface with non-uniform source/sink and thermal radiation. The transformed nonlinear boundary layer equations are solved numerically by applying Keller-box method. The numerical results are compared and found to be in good agreement with previously published results under special cases. Finally, the influence of various embedded flow parameters on local skin friction, local Nusselt number and local Sherwood number have been analyzed through graphs carefully.

References

L.J. Crane, J. Appl. Math Phys. 21 (1970) 645.

P.S. Gupta and A.S. Gupta, Can. J. Chem. Eng. 55 (1977) 744.

L.J. Grubka and K.M. Bobba, ASME J. Heat Transfer 107 (1985)

C.-K. Chen and M.-I. Char, J. Math. Anal. Appl. 135 (1988) 568.

M.E. Ali, Heat Mass Transf. 29 (1994) 227.

M.-I. Char, Heat Mass Transf. 29 (1994) 495.

C.-H. Chen, Heat Mass Transf. 33 (1998) 471.

A. Ishak, R. Nazar, and I. Pop, ASME J. Heat Transf. 129 (2007)

A. Ishak, R. Nazar and I. Pop, Heat Mass Transf. 44 (2008) 921.

C.Y. Wang, Nonlinear Anal. RWA. 10 (2009) 375.

T. Fang, J. Zhang and Y. Zhong, Appl. Math. Comput. 218 (2012)

S. Mukhopadhyay, Int. J. Heat Mass Transf. 52 (2009) 3261.

D. Pal and M.S. Malashetty, Int. J. Appl. Mech. Eng.13 (2008) 427.

M.A. Hossain and H.S. Takhar, Int. J. Heat Mass Transf. 31 (1996)

H.S. Takhar, R.S.R. Gorla and V.M. Soundalgekar, Int. J. Numer.

Meth. Heat Fluid Flow 6 (1996) 77.

D. Pal, Meccanica 44 (2009) 145.

Z. M. Yusof, S. K. Soid, A. S. Abd Aziz and S. A. Kechil, World

Acad. Sci. Eng. Tech. 6 (2012) 1727.

E.M. Abo-Eldahab and M.A. El-Aziz, Int. J. Theor. Sci. 43 (2004)

D. Pal and H. Mondal, Commun. Nonlinear Sci. Numer. Simul. 15

(2010) 1533.

G. M. Pavithra and B. J. Gireesha, J. Mathematics 2013 (2013).

T.Y. Na and I. Pop, Mech. Res. Comm. 23 (1996) 413.

C.Y. Wang, G. Du, M. Miklavi and C.C. Chang, SIAM J. Appl.

Math. 57 (1997) 1.

E.M.A. Elbashbeshy and M.A.A. Bazid, Appl. Math. Comput., 138

(2003) 239.

A. Ishak, R. Nazar and I. Pop, Nonlinear Anal: Real World Appl. 10

(2009) 2909.

D. Pal, Comm. Nonlinear Sci. Numer. Simulat. 16 (2011) 1890.

Y.I. Seini, J. Eng. Manufac. Tech. 1 (2013) 24.

A. Raptis, Int. Comm. Heat Mass Transf. 25 (1998) 289.

M. Abramowitz and I.A. Stegun, Handbook of Mathematical

Functions, New York, Dover (1965).

T. Cebeci and P. Bradshaw, Physical and Computational Aspects of

Convective Heat Transfer (Springer, New York, 1988).

Downloads

Published

25-10-2014

How to Cite

[1]
M. Aurangzaib, S. M. Murshid, and S. A. Urooj, “Heat and Mass Transfer Over an Unsteady Stretching Permeable Surface with Non-Uniform Heat Source/Sink and Thermal Radiation”, The Nucleus, vol. 51, no. 4, pp. 411–417, Oct. 2014.

Issue

Section

Articles