TRANSPORT, MAGNETIC AND THERMAL PROPERTIES OF (Fe100-XVX)75 P15C10 SEMIAMORPHOUS RIBBONS
Abstract
(Fe100-xVx)75P15C10 [x=1.5, 3, 9 and 15] semi-amorphous alloys (partially crystalline) in the form of ribbon were prepared by the standard melt spinning technique and studied their transport, magnetic and thermal properties. The nature of the as prepared samples was studied by x-ray diffraction (XRD). The resistivity of the samples was investigated from temperature 93K to 800 K. The resistivity followed ‘Mooij Correlation’ at low temperature (93 K-300 K). The resistivity at higher temperature (300 K-800 K) remained constant upto a certain temperature and then decreased with temperature rise. The Hall resistivity and the magnetoresistance (MR) were measured in an applied magnetic field upto 0.6 T at room temperature (RT=300 K). Anomalous Hall effect was observed in the Hall resistivity measurement and MR was found to vary 0-8%. The saturation magnetization gradually decreases with the increase of the substitution of Fe by V at RT. Both the impedance magnitude and phase angle remained constant upto 106 Hz and then remarkably increased with frequency. The thermal properties associated with crystallization temperature and weight changes were measured by using the differential thermal analyzer (DTA) and the thermo gravimetric (TG) techniques respectively.References
H. Chiriac
(1996) 333.
J. M. Garcia, A.
and M. Vazquez, J. Non-Cryst. Sol. 287
(2001) 55.
P. Vojtanik
(2006) 159.
R. Nowosiels
Engg. 20 (2007) 487.
D. Szewieczek, J. Tyrlik
Achiev. Mater. Manuf. Engg. 24 (2007) 87.
A. Inoue, A. Makino and T. Mizushima,
Magn. Magn. Mater. 215-216 (2000) 246.
R. B. Schwarz, T. D. Shen, U. Harms and
Lillo, J. Magn. Magn. Mater. 283 (2004) 223.
K. Heinemenn and K. Barner, Appl. Phys.
Lett. 50 (1986) 1284.
P. J. Cote and L. V. Meis
eds. H. J. Guntherodt and H. Beck, Springer
Verlag, Berlin (1981) p. 141.
A. K. Sinha, J. Appl. Phys. 42
S. N. Kaul, W. Kettler and Rosenberg, Ph
Rev. B 33 (1986) 4987.
S. N. Kaul, Phys. Rev. B
A. Erle and K. Barner, J. Magn. Magn. Mat.
(1988) 225.
S. U. Jen and S
(1988) 4303.
L. Berger an
Westgate, Plenum Press, New Yark (1979)
p. 55.
J. H. Mooij, Phys. Status Solidi A 17 (1973)
P. W. Anderson, Phys. Rev. 109 (1958)
J. Mizia and G. Gorski, Models of itinerant
orderin
Science Publishing Company (2007) p. 131.
I. Vincze and I. A. Campbell, J. Phys. F: Met.
Phys. 3 (1973) 647.
A. T. Aldred, Int. J. Magn. 2 (1972) 223.
G. K. Wertheim, V. Jacarrino, J. H. We
and D. N. E. Buchanan, Phys. Rev. Lett
(1964) 24.
A. M. Van der Kraan, D. B. Mooij and K. H. J.
Buschow, Ph
N. Hamada and H. Miwa, Prog. Theor. Phys.
(1978) 1045.
N. Hamada, J. Phys. Soc. Jpn. 50 (1981) 77.
V. L. Moruzzi and P. M. Marcus, Phys. Rev. B
(1992) 2934.
A. Paja and K. Kulakowski, J. Phys. F: Met.
Phys. 9 (1979) 16
U. Mizutani, Introduction to the electron
theory of metals, Camb
(2003) p. 418.
M. Kamruzzamana, I. Z. Rahman and M. A.
Rahman, J. M
B. Kaviraj and S. K. Ghatak, J. Mater. Proc.
Tech.
R. Nowosielski, R. Babilas, P. Ochin and Z.
Stoklosa, Archiv. Mater.
A. L. Greer, Acta Metall. 30 (1982) 171.
A. Pratap, K.G. Raval, A. Gupta and S.
Kulkarni, Bull. Mater. Sci. 23 (2000) 185.
R. C. Budhani, T. C. Goel and K. L. Chopra,
Bull. Mater. Sci. 4 (1982) 549.
M. Kamruzzaman, M. Phil. Thesis, BUET,
(2010).
C. C. Tsuei and H. Lilienthal, Phys. Rev. B 13
(1976) 4
P. K. Rastogi and P. Duwez, J. Non-cryst.
Sol. 5 (1970) 1.