RADIOCHEMICAL DETERMINATION OF NUCLEAR DATA

Authors

  • S. M. Qaim Institut für Nuklearchemie, Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany

Abstract

A vast knowledge of nuclear data is available and is grouped under three headings, namely, nuclear structure, nuclear decay and nuclear reaction data. Data measurements are done using a large number of techniques, including the radiochemical method, which has been extensively worked out at Juelich. This method is used for preparation of high-quality samples for irradiation, isolation of the desired radioactive product from the strong matrix activity, and preparation of thin suitable sources for accurate measurement of the radioactivity. The radiochemical method is especially suitable for fundamental studies on light complex particle emission reactions and formation of low-lying isomeric states. The neutron induced reaction cross section data are also of practical application in fusion reactor technology, particularly for calculations on tritium breeding, gas production in structural materials and activation of reactor components. The charged particle induced reaction cross section data, on the other hand, are of significance in developing new production routes of novel positron emitters and therapeutic radionuclides at a cyclotron. A brief overview of all those studies is given.

References

Evaluated Nuclear Structure Data File (ENSDF), National Nuclear Data Center (NNDC), Brookhaven, USA, and International Atomic Energy Agency (IAEA), Vienna (2007).

R.B. Firestone, Table of Isotopes, CDROM-Edition, Version 1.0, Wiley-Interscience, New York (1996).

F. Szelecsényi, G. Blessing and S.M. Qaim, Appl. Radiat. Isot. 44 (1993) 575.

K. Hilgers, T. Stoll, Y. Skakun, H.H. Coenen and S.M. Qaim, Appl. Radiat. Isot. 59 (2003) 343.

S.M. Qaim, T. Bisinger, K. Hilgers, D. Nayak, and H.H. Coenen, Radiochim. Acta 95 (2007) 67.

G. Wermann, D. Alber, W. Pritzkow, G. Riebe, J. Vogl and W. Goerner, Appl. Radiat. Isot. 56 (2002) 145.

A. Hohn, H.H. Coenen and S.M. Qaim, Radiochim. Acta 88 (2000) 139.

S.M. Qaim, A. Hohn, Th. Bastian, K.M. El-Azoney, G. Blessing, S. Speller-berg, B. Scholten and H.H. Coenen, Appl. Radiat. Isot. 58 (2003) 69.

S.M. Qaim, Radiochim. Acta 70/71 (1995) 163.

S.M. Qaim, H.V. Klapdor and H. Reiss, Phys. Rev. C22 (1980) 1371.

S.M. Qaim, M. Uhl, N.I. Molla and H. Liskien, Phys. Rev. C46 (1992) 1398.

S.M. Qaim, M. Uhl, F. Roesch and F. Szelecsényi, Phys. Rev. C52 (1995) 733.

S.M. Qaim and R. Woelfle, Phys. Rev. C32 (1985) 305.

S.M. Qaim, C.H. Wu and R. Woelfle, Nucl. Phys. A410 (1983) 421.

B. Scholten, S.M. Qaim and G. Stoecklin, Radiochim. Acta 62 (1993) 107.

S.M. Qaim, A. Mushtaq and M. Uhl, Phys. Rev. C38 (1988) 645.

S. Sudár and S.M. Qaim, Phys. Rev. C53 (1996) 2885.

S.M. Qaim, S. Sudár and A. Fessler, Radiochim. Acta 93 (2005) 503.

S. Sudár and S.M. Qaim, Phys. Rev. C73 (2006) 034613.

M. Al-Abyad, S. Sudár, M.N. Comsan and S.M. Qaim, Phys. Rev; C73 (2006) 064608.

S.M. Qaim, The Nucleus 33, No. 4 (1996) 23.

J.H. Zaidi, S.M. Qaim and G. Stoecklin, Int. J. Appl. Radiat. Isot. 34 (1983) 1425.

B. Scholten, S.M. Qaim and G. Stoecklin, Appl. Radiat. Isot. 40 (1989) 127.

B. Scholten, Z. Kovács, F. Tárkányi and S.M. Qaim, Appl. Radiat. Isot. 46 (1995) 255.

F. Tárkányi, S.M. Qaim, G. Stoecklin, M. Sajjad, R.M. Lambrecht and H. Schweickert, Appl. Radiat. Isot. 42 (1991) 221.

S.M. Qaim, R. Weinreich and H. Ollig, Int. J. Appl. Radiat. Isot. 30 (1979) 85.

Z. Kovács, B. Scholten, F. Tárkányi, H.H. Coenen and S.M. Qaim, Radiochim. Acta 91 (2003) 185.

E. Hess, S. Takács, B. Scholten, F. Tárkányi, H.H. Coenen and S.M. Qaim, Radiochim. Acta 89 (2001) 357.

S.M. Qaim, G.F. Steyn, I. Spahn, S. Spellerberg, T.N. van der Walt and H.H. Coenen, Appl. Radiat. Isot. 65 (2007) 247.

Nuclear Data for Medical Applications (S.M. Qaim, Editor), Special Issue of Radiochim. Acta 89 (2001) 189-355.

T. Nozaki, Y. Itoh and K. Ogawa, Int. J. Appl. Radiat. Isot. 30 (1979) 595.

A. Mushtaq, S.M. Qaim and G. Stoecklin, Appl. Radiat. Isot. 39 (1988) 1085.

A. Mushtaq and S.M. Qaim, Radiochim. Acta 50 (1990) 27.

G. Blessing, N. Lavi and S.M. Qaim, Appl. Radiat. Isot. 43 (1992) 455.

A. Hermanne, M. Sonck, A. Fenyvesi, and L. Daraban, Nucl. Instr. Meth. Phys. Res. B170 (2000) 281.

S. Sudár, F. Cserpák and S.M. Qaim, Appl. Radiat. Isot. 56 (2002) 821.

A. Hermanne, M. Sonck, S. Takács, F. Tárkányi and Y. Shubin, Nucl. Instr. Meth. Phys. Res. B187 (2002) 3.

Ye. Skakun and S.M. Qaim, Appl. Radiat. Isot. 66 (2008) 653.

M. Fassbender, F.M. Nortier, I.W. Schroeder, and T.N. van der Walt, Radiochim. Acta 87 (1999) 87.

M.S. Uddin, M. Baba, M. Hagiwara, Sk. A. Latif and S.M. Qaim, Radiochim. Acta 96 (2008) 67.

Downloads

Published

01-07-2020

How to Cite

[1]
S. M. Qaim, “RADIOCHEMICAL DETERMINATION OF NUCLEAR DATA”, The Nucleus, vol. 45, no. 3-4, pp. 83–90, Jul. 2020.

Issue

Section

Articles