NUMERICAL SOLUTION FOR HYDROMAGNATIC FLUID FLOW BETWEEN TWO HORIZONTAL PLATES, BOTH THE PLATES BEING STRETCHING SHEETS

Authors

  • S. Hussain Centre for Advanced Studies in Pure and Applied Mathematics, B. Z. University, Multan, Pakistan
  • M. A. Kamal 1Department of Mathematics, Suleman Bin Abdul Aziz University, Al-Kharj, Saudi Arabia

Abstract

Numerical solution for the flow of an incompressible, steady and viscous electrically conducting fluid between two horizontal parallel non-conducting plates, the lower one is a stretching sheet and the upper one is a porous stretching sheet is found. The effects of flow parameters namely M the magnetic parameter, ï¬ the suction parameter and R the Reynolds number have been observed on velocity profiles. Similarity transformations have been used. The resulting ordinary differential equations are solved by using SOR method and Simpson’s (1/3) rule. The results have been improved by Richardson extrapolation. The numerical scheme is straightforward, easy to program and very efficient.

References

Altan, S. Oh, and H. Gegel, Metal Forming

Fundamentals and Applications, Americans

Society of Metals, Metals Park (1979).

Z. Tadmor and I. Klein., Engineering Principles of

Plasticating Extrusion in polymer Science and

Engineering Series (Van Nostrand Reinhold, New

York (1970).

B. C. Sakiadas, J. AlChe 7 (1961) 221.

B. C. Sakiadas, J. AlChe 7 ( 1961) 26.

I. J. Crane, Zeit. Angew. Math. Phys. 21 (1970)

T. C. Chiam, J. Phys. Soc. Japan 63 (1994) 244.

A. Chakrabarti and A.S. Gupta, Quart. Appl.

Math. 37 (1979) 73.

H.I. Andersson, Acta Mech. 113 (1995) 241.

I. Pop and T.Y. Na, Mech. Res. Commun. 25, No.

(1998) 263.

S.J. Liao, J. Fluid Mech. 488 (2003) 189.

S. Able, P. H. Veena, K. Rajagopal and V. K.

Pravin, Int. J. Nonlinear Mech. 39 (2004) 1067.

T. Hayat, M. Sajid and I. Pop, Nonlinear Analysis:

Real World Application 9 (2008) 1811.

V. Kumaran, A.K. Banerjee, A.Vanav Kumar and

K.Vajravelu, Applied Mathematics and

Computation 210 (2009) 26.

G.D Smith, Numerical Solution of Partial

Differential Equation, Clarendon Press, Oxford

(1979).

C. F. Gerald, Applied Numerical Analysis,

Addison-Wesley Pub. NY (1989).

W. E. Milne, Numerical Solution of Differential

Equation, Dover Pub. (1970).

R. L. Burden, Numerical Analysis, Prindle, Weber

& Schmidt, Boston (1985).

Downloads

Published

02-04-2014

How to Cite

[1]
S. Hussain and M. A. Kamal, “NUMERICAL SOLUTION FOR HYDROMAGNATIC FLUID FLOW BETWEEN TWO HORIZONTAL PLATES, BOTH THE PLATES BEING STRETCHING SHEETS”, The Nucleus, vol. 51, no. 2, pp. 153–158, Apr. 2014.

Issue

Section

Articles

Most read articles by the same author(s)