NUMERICAL SOLUTION FOR HYDROMAGNATIC FLUID FLOW BETWEEN TWO HORIZONTAL PLATES, BOTH THE PLATES BEING STRETCHING SHEETS
Abstract
Numerical solution for the flow of an incompressible, steady and viscous electrically conducting fluid between two horizontal parallel non-conducting plates, the lower one is a stretching sheet and the upper one is a porous stretching sheet is found. The effects of flow parameters namely M the magnetic parameter, ï¬ the suction parameter and R the Reynolds number have been observed on velocity profiles. Similarity transformations have been used. The resulting ordinary differential equations are solved by using SOR method and Simpson’s (1/3) rule. The results have been improved by Richardson extrapolation. The numerical scheme is straightforward, easy to program and very efficient.References
Altan, S. Oh, and H. Gegel, Metal Forming
Fundamentals and Applications, Americans
Society of Metals, Metals Park (1979).
Z. Tadmor and I. Klein., Engineering Principles of
Plasticating Extrusion in polymer Science and
Engineering Series (Van Nostrand Reinhold, New
York (1970).
B. C. Sakiadas, J. AlChe 7 (1961) 221.
B. C. Sakiadas, J. AlChe 7 ( 1961) 26.
I. J. Crane, Zeit. Angew. Math. Phys. 21 (1970)
T. C. Chiam, J. Phys. Soc. Japan 63 (1994) 244.
A. Chakrabarti and A.S. Gupta, Quart. Appl.
Math. 37 (1979) 73.
H.I. Andersson, Acta Mech. 113 (1995) 241.
I. Pop and T.Y. Na, Mech. Res. Commun. 25, No.
(1998) 263.
S.J. Liao, J. Fluid Mech. 488 (2003) 189.
S. Able, P. H. Veena, K. Rajagopal and V. K.
Pravin, Int. J. Nonlinear Mech. 39 (2004) 1067.
T. Hayat, M. Sajid and I. Pop, Nonlinear Analysis:
Real World Application 9 (2008) 1811.
V. Kumaran, A.K. Banerjee, A.Vanav Kumar and
K.Vajravelu, Applied Mathematics and
Computation 210 (2009) 26.
G.D Smith, Numerical Solution of Partial
Differential Equation, Clarendon Press, Oxford
(1979).
C. F. Gerald, Applied Numerical Analysis,
Addison-Wesley Pub. NY (1989).
W. E. Milne, Numerical Solution of Differential
Equation, Dover Pub. (1970).
R. L. Burden, Numerical Analysis, Prindle, Weber
& Schmidt, Boston (1985).