EFFECT OF STOICHIOMETRIC COMPOSITIONS ON THE DEVELOPMENT OF PHASE AND MICROSTRUCTURE IN CALCIA STABILIZED ZIRCONIA CERAMIC
Abstract
Calcia stabilized zirconia (CSZ) ceramic material was synthesized with stoichiometric compositions 4, 8, 12 and 16wt.% by mixed oxide reaction using fine homogeneous salts of zirconia and calcia. Powder compacts were sintered at 1950°C for 6h in an inert argon atmosphere. The phase identification, purity, crystalline and lattice parameters of cubic CSZ were measured by X-ray diffraction (XRD). Combination of cubic zirconia (Ca0.15Zr0.85O1.85), calcium-zirconium oxide (CaZrO3) and zirconium oxide (ZrO) phases were observed in all compositions. The percent relative densities were measured in order to evaluate the material performance and found to decrease from 85 to 74% with increase of stoichiometeric compositions 4 to 16wt%. These results were in agreement with scanning electron microscopy (SEM) where it was observed that porosity increased with increase of calcia. The co-efficient of thermal expansion was estimated by dilatometry. The results revealed that coefficient of thermal expansion (α) decreases with the increase of compositions from 4 to 16wt.% .References
N.Q. Minh and T. Takahshi, Science and
Technology of Ceramic Fuel Cells, Elsevier
Science, Amsterdam, Netherlands (1995)
p.70.
R. Mukundan, K. Teranishi, E. L. Brosha and
F. H.Garzon, J. Electrochem. Soc. Lett. 10
(2007) J26.
R. Mukundan, E. L. Brosha, F. H. Garzon,
R. Novak and R. Soltis, ECS Transactions 3,
No10 (2006).
P. Duran and J.F. Fernandez (Eds.), Third
Euro-Ceramics, Properties of Ceramics,
Vol.2, Faenza Editrice Iberica, S.L. San
Vicente, Spain (1993).
A.H. Heuer and L.W. Hobbs (Eds.),
Advances in Ceramic Science and
Technology of Zirconia, vol. 3, American
Ceramic Society, Columbus, OH (1981) p.
D.Hotza, A.Leo, J. Sunarso and J.C.D da
Costa, J. Nano Research 6 (2009) 115.
V.V. Silva, F.S. Lameiras and R.Z.
Domingues, Ceramics Int. 27 (2001) 615.
S. Bhattacharjee, U. Syamaprasad, R.K.
Galgali and B.C. Mohanty, Mater. Lett. 11
(1991) 59.
V.V. Silva and F.S. Lameiras, Mater. Char.
(2000) 51.
R. Muccillo, R.C.B. Netto and E.N.S.
Muccillo, Mater. Lett. 49 (2001) 197.
J. GarcÃa, P. Quintana, D.H. Aguilar, T.
Lopez and R. Gomez, J. Sol-Gel Sci. Tech.
(2006) 185.
S.K. Durrani, J. Akhtar, M. Ahmad and M.A.
Hussain, Mater. Chem. Phys. 100 (2006)
S.K. Durrani, S. Rehman, F. Qazi, S.Z.
Hussain, M. Ahmad, M.Arif and B.
Mohammad, The Nucleus 48 (2011) 91.
C. Changlian, S. Qiang, L.I .Junguo and
Z.Lianmeng, J. Wuhan University of
Technology-Mater. Sci. Edition 24 (2009)
S.K. Saha and P. Pramanik, Br. Ceram.
Trans. 94 (1995) 123.
E. Torres-GarcÃa, G. Rosas, J.A. Ascencio,
E. Haro-Poniatowski and R. Pérez, Appl.
Phys. A 79 (2004) 401.
J. Hernández, J. Zárate and G. Rosas, J.
Ceram. Process Research 10 (2009)144
A. Rizzuti , A. Corradi, C. Leonelli, R. Rosa,
R. Pielaszek and W. Lojkowski, J. Nanopart.
Res. 10 (2010) 327.
F. Frey, H. Boysen and T.Vogt, Acta. Cryst.
B46 (1990) 724.
J. M. Leger, .P. E. Tomaszewski, A. Atouf
and A.S. Pereira, Phys. Rev. B47 (1993)
B.K. Roul, S.K. Singh and B.C. Mohanty, J.
Mater. Syn. Processing 6 (1998) 9.
C.Chen, Q. Shen, J.Li and L.Zhang.
J. Wuhan Univ. Tech. Mater. Sci. Edition 24
(2009) 304.
M. Han, X. Tang and W. Shao, J. Wuhan
Uni. Tech. Mater.Sci.edition. 23 (2008), 775.
P. Duran, J.M. Rodriguez and P. Recio,
J. Mater. Sci. 26(1991) 467.
I. Abrham and G.Gritzner, J. Euro. Ceram.
Soc. 16 (1996) 71.
G.D. Agli and G.Mascolo, J. Mater.Sci. 35
(2000) 61.
W.F. McClune (Ed.) Powder Diffraction File,
Inorganic Phases, International Centre for
Diffraction Data,Swarthmore, PA (1989).
J.S. Lee, J.I.L.Park and T.W.Choi, J. Mater.
Sci. 31 (1996) 2833.
M. Dudek, G. Rog, W. Bogusz, A.
Kozlowska-Rog, M. Bucko and L. Zych,
Materials Science, Poland 24 (2006) 253.