ON DOMINATION NUMBER OF CARTESIAN PRODUCT OF EVEN CYCLES

Authors

  • A. D. Jumani Department of Mathematics, Shah Abdul Latif University, Khairpur 66020, Pakistan

Abstract

Let γ(G) denote the domination number of the graph G and let γ(GH) denote the domination number of the Cartesian product of the graphs and . Here in this note; let denote the cycle with three vertices and similarly, let denote the cycle with n vertices. The domination number of the Cartesian product of two even cycles and is characterized here, wherem< , with such that G H C3 Cn Cm Cn n m ≥ 4 m n mn γ(C C )= 4 if and only if 2 divides mn 4 , that is, iff mn 2 | 4

References

V. G. Vizing, Vychisl, Sistemy 90, 63 (1963)

V. G. Vizing, Uspehi Mat. Nauk 23 (1986)

M. El-Zahar and C. M. Pareek, Ars Combin.

(1991) 223.

R.J. Faudree and R. H. Schelp, Congr.

Numer. 79 (1990) 29.

W. T. Tutte, Graph Theory, Cambridge

University Press (2001).

M. S. Jacobson and L. F. Kinch, J. Graph

Theory 10 (1986) 97.

J.A. Bondy and U.S.R. Murty, Graph Theory,

Springer (2010).

J.A. Gallian, Electronic J. Combinatorics,

DS6 (Jan.3, 2007) 1.

S. Klavzar and N. Seifter, Discrete Applied

Mathematics 59 (1995) 97.

D. Gonçalves, A. Pinlou, M. Rao and S.

Thomassé, The Domination Number of

Grids, 2011arXiv1102.5206G

A. Klobucar, Mathematical Communications

(2004) 35.

Downloads

Published

02-12-2011

How to Cite

[1]
A. D. Jumani, “ON DOMINATION NUMBER OF CARTESIAN PRODUCT OF EVEN CYCLES”, The Nucleus, vol. 48, no. 4, pp. 269–272, Dec. 2011.

Issue

Section

Articles

Most read articles by the same author(s)