ON CARTESIAN PRODUCT OF CYCLES AND PATHS

Authors

  • A. D. Jumani Department of Mathematics, Shah Abdul Latif University, Khairpur, Pakistan

Abstract

Let G,H denote the Cartesian product of the graphs G and H and let γ(G,H) denote the domination number of the Cartesian product of the two simple graphs G and . In this note, the domination number of the Cartesian product , and is determined; that is H C3 n ,P C4,Pn C5,Pn 3 n γ(C ,P ) = n , 4 n γ(C ,P ) = n where n ≥ 1 and 5 n 5n 1 (C P ) 3 ⎢ ⎥ − γ = ⎢ ⎥ ⎣ ⎦ , where n 4 ≥ .

References

S. Klavzar and N. Seifter, Discrete Applied

Mathematics 59 (1995) 97.

V. G. Vizing, Sistemy 9 (1963) 30.

V. G. Vizing, Uspehi Mat. Nauk 23 (1986)

M. El-Zahar and C. M. Pareek, Ars Combin.

(1991) 223.

R.J. Faudree and R. H. Schelp, Congr.

Numer. 79 (1990) 29.

M. S. Jacobson and L. F. Kinch, J. Graph

Theory 10 (1986) 97.

S. Alikhani and Yee-Hock Peng, International

Journal of Mathematics and Mathematical

Sciences doi:10.1155/2009/542040, (2009).

S. Gravier and M. Mollard, On domination

numbers of Cartesian of Paths, Discrete

Applied Mathematics 80, No. 2-3 (1997) 247.

G. Chartrand and P. Zhang, Introduction to

Graph Theory, McGraw-Hill, Boston, Mas.

USA (2005).

Downloads

Published

06-09-2011

How to Cite

[1]
A. D. Jumani, “ON CARTESIAN PRODUCT OF CYCLES AND PATHS”, The Nucleus, vol. 48, no. 3, pp. 187–189, Sep. 2011.

Issue

Section

Articles