Computing Shortest Path in a Single Valued Neutrosophic Hesitant Fuzzy Network
Abstract
In engineering, computer sciences and many other applied sciences, finding shortest path in a network
is one of the famous problems. The aim of this manuscript is to develop a novel algorithm for finding
shortest path in a network where nodes and edges have some uncertainty. Firstly, the concept of singlevalued
neutrosophic hesitant fuzzy graph (SVNHFG) has been introduced with some related graph
theoretic results. Some examples are provided to understand the defined concepts. Then, the new
algorithm for solving shortest path problems (SPPs) has been introduced followed by a flowchart for a
stepwise description. A numerical example is provided in the environment of SVNHFGs to demonstrate
the proposed algorithm. The advantages of proposed method over the existing techniques are also
studied.
References
R. Dial, F. Glover, D. Karney and D. Klingman, ‟A computational analysis of alternative algorithms and labeling techniques for finding shortest path treesâ€, Networks, vol. 9, no. 3, pp. 215-248, 1979.
G.Y. Handler and I. Zang, ‟A dual algorithm for the constrained shortest path problemâ€, Networks, vol. 10, no. 4, pp. 293-309, 1980.
Z. Teradata, ‟Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithmsâ€, Int. J Ap. Mat. Com-pol., vol. 17, no. 2, pp. 269-287, 2007.
S. Okada and S. Soper, ‟A shortest path problem on a network with fuzzy arc lengthsâ€, Fuzzy Set Syst., vol. 109, no. 1, pp. 129-140, 2000.
K.C. Lin and M.S. Chern, ‟The fuzzy shortest path problem and its most vital arcsâ€, Fuzzy Set Syst., vol. 58, no. 3, pp. 343-353, 1993. [6] Y. Deng, Y. Chen, Y. Zhang and S. Mahadevan, ‟Fuzzy Dijkstra algorithm for shortest path problem under uncertain environmentâ€, Appl. Soft. Comput., vol. 12, no. 3, pp. 1231-1237, 2012.
S.N. Chuang and J.Y. Kung, ‟The fuzzy shortest path length and the corresponding shortest path in a networkâ€, Comp. Oper. Res., vol. 32, no. 6, pp. 1409-1428, 2005. [8] S. Broumi, A. Bakal, M. Talea, F. Smarandache and L. Vladareanu. “Applying Dijkstra algorithm for solving neutrosophic shortest path problemâ€, Int. Conf. Adv. Mechatronic Syst., vol. 2, pp. 412-416, November 2016. [9] S. Broumi, A. Bakal, M. Talea, F. Smarandache and L. Vladareanu, “Computation of shortest path problem in a network with SV-trapezoidal neutrosophic numbersË®, Int. Conf. Adv. Mechatronic Syst., vol. 2, pp. 417-422, November 2016. [10] S. Broumi, A. Bakal, M. Talea, F. Smarandache and M. Ali, ‟Shortest Path Problem under Bipolar Neutrosophic Settingâ€, Appl. Mech. Mater, vol. 859, pp. 59-66, 2017. [11] S. Broumi, A. Bakal, M. Talea, F. Smarandache and K.K. PK, ‟Shortest path problem on single valued neutrosophic graphsâ€, Infinite Study, vol. 2, no. 1, pp. 1-6, 2017. [12] S. Broumi, A. Bakal, M. Talea, F. Smarandache, K.K. Kishore and R. Sahin, ‟Shortest path problem under interval valued neutrosophic settingâ€, J. Fundam. Appl. Sci., vol. 10, no. 4, pp. 168-174, 2018. [13] S. Broumi, A. Bakal, M. Talea, F. Smarandache and K. Ullah, ‟Bipolar Neutrosophic Minimum Spanning Treeâ€, Infinite Study, vol. 1, pp. 2, 2018.
J. Ye, ‟Single-valued neutrosophic minimum spanning tree and its clustering methodâ€, J Intell. Syst., vol. 23, no. 3, pp. 311-324, 2014.
L.A. Zadeh, ‟Fuzzy setsâ€, Inf. Control., vol. 8, no. 3, pp. 338-353, 1965.
K.S. Atanassov, ‟Intuitionistic fuzzy sets.†Fuzzy sets and Syst., vol. 20, no. 1, pp. 87-96, 1986. [17] Mukherjee, Anjan and S. Sarkar, "Several similarity measures of interval valued neutrosophic soft sets and their application in pattern recognition problems", Neutrosophic Sets Syst., vol. 6, pp. 55-61, 2014. [18] W. Haibin, F. Smarandache, Y. Zhang, and R. Sunderraman, ‟Single valued neutrosophic setsâ€, Infinite Study, vol. 17, no. 1, pp. 10, 2010.
B.C. Cuong, ‟Picture fuzzy setsâ€, J Comp. Sci. Cyberne., vol. 30, no. 4, pp. 409, 2014.
T. Mahmood, K. Ullah, Q. Khan and N. Jan, ‟An approach towards decision making and medical diagnosis problems using the concept of spherical fuzzy setsâ€, Neural Comput. Appl., vol. 31, no. 11, pp. 7041-7053, 2018.
Muhammad Saad et al. / The Nucleus 56, No. 3 (2019) 123-130
K. Ullah, T. Mahmood and N. Jan, ‟Similarity Measures for T-Spherical fuzzy sets with applications in pattern recognitionâ€, Symmetry, vol. 10, no. 6, pp. 193, 2018.
V. Torra, ‟Hesitant fuzzy setsâ€, Int. J Intell. Syst., vol. 25, no. 6, pp. 529-539, 2010. [23] K. Ullah, Mahmood, N. Jan, S. Broumi S and Q. Khan, ‟On Bipolar-valued hesitant fuzzy sets and their applications in multi-attribute decision makingâ€, The Nucleus, vol. 55, no. 2, pp. 93-101, 2018. [24] T. Mahmood, K. Ullah, Q. Khan and F. Smarandache, ‟Some aggregation operators for bipolar-valued hesitant fuzzy informationâ€, J Fundam. Appl. Sci., vol. 10, no. 4, pp. 240-245, 2018. [25] T. Mahmood, J. Ye, and Q. Khan, ‟Vector similarity measures for simplified neutrosophic hesitant fuzzy set and their applicationsâ€, J Inequ. Spec. Func., vol. 7, no. 4. pp. 176-194, 2016.
T. Mahmood and M. Munir, ‟On bipolar fuzzy subgroupsâ€, World Appl. Sci. J, vol. 27, no. 12. pp. 1806-1811, 2013.
Q. Khan, T. Mahmood and J. Ye, ‟Multiple attribute decision-making method under hesitant single valued neutrosophic uncertain linguistic environmentâ€, Infinite Study, vol. 8, no. 2, pp. 1-17, 2017.
N. Jan, L. Zedam , T. Mahmood, K. Ullah, Z. Ali, ‟Multiple attribute decision making method under linguistic cubic informationâ€, J Intell. Fuzzy Syst., vol. 36, no. 1, pp. 253-269, 2019.
A. Kaufmann, ‟Introduction à la théorie des sous-ensembles flous à l'usage des ingénieursâ€, Élémentsthéoriques de base, vol. 1, pp. 41-189, 1973.
A. Rosenfeld, ‟Fuzzy graphs, in Fuzzy sets and their applications to cognitive and decision processesâ€, Elsevier, 1975.
R. Parvathi and M. Karunambigai, ‟Intuitionistic fuzzy graphs, in Computational Intelligence, Theory and Applicationsâ€, Springer, 2006.
R. Parvathi, M. Karunambigai and K. Atanassov. ‟Operations on intuitionistic fuzzy graphsâ€, Fuzzy Syst. IEEE Int. Conf. Fuzzy Syst., vol. 51, no. 5, pp. 1396-1409, 2009.
R. Parvathi, S. Thilagavathi and M. Karunambigai, ‟Intuitionistic fuzzy hypergraphsâ€, Cyberne. Info. Tech., vol. 9, no. 2, pp. 46-53, 2009. [34] R. Parvathi, S. Thilagavathi, G. Thamizhendhi and M.G. Karunambigai, ‟Index matrix representation of intuitionistic fuzzy graphsâ€, Notes Intuitionistic Fuzzy Sets, vol. 20, no. 2, pp. 100-108, 2014.
G. Pasi, R. Yager, and K. Atanassov. ‟Intuitionistic fuzzy graph interpretations of multi-person multi-criteria decision makingâ€, 2nd Int. IEEE Conf. Gen Net Appro. Intell. Syst., vol. 2, pp. 434-439, 2004.
S.S. Dhavudh and R. Srinivasan, ‟Intuitionistic fuzzy graphs of second typeâ€, Adv. Fuzzy Math., vol. 12, no. 2, pp. 197-204, 2017.
B. Davvaz, N. Jan, T. Mahmood and K. Ullah, ‟Intuitionistic fuzzy graphs of nth type with applicationsâ€, J Intell. Fuzzy Syst., vol. 36, no. 4, pp. 3923-3932, 2018. [38] Yaqoob, Naveed, M. Gulistan, S. Kadry and H.A. Wahab, ‟Complex intuitionistic fuzzy graphs with application in cellular network provider companiesâ€, J Math., vol. 7, no. 1, pp. 35, 2019. [39] Hussain, S. Satham, R.J. Hussain, Y.B Jun and F. Smarandache, ‟Neutrosophic bipolar vague set and its application to neutrosophic bipolar vague graphsâ€, Neutrosophic Sets Syst., vol. 28, no. 1, pp. 8, 2019. [40] S. Broumi, M. Talea, A. Bakali and F. Smarandache, ‟Single valued neutrosophic graphsâ€, J New theory, vol. 10, pp. 86-101, 2015. [41] S. Broumi, M. Talea, A. Bakali and F. Smarandache, ‟Interval valued neutrosophic graphsâ€, Crit. Rev., vol. 10, pp. 5-33, 2016. [42] S. Broumi, M. Talea, A. Bakali and F. Smarandache, ‟On strong interval valued neutrosophic graphsâ€, Crit. Rev., vol. 12, pp. 49-71, 2016. [43] S. Broumi, K. Ullah, A. Bakali and M. Talea, ‟Novel system and method for telephone network planning based on neutrosophic graphâ€, Infinite Study, vol. 10, no. 4, pp. 403-434, 2018. [44] M. Gulistan, N. Yaqoob, Z. Rashid, F. Smarandache and H. A. Wahab, ‟A study on neutrosophic cubic graphs with real life applications in industriesâ€, Symmetry, vol. 10, no. 6, pp. 203, 2018.
C. Zhang and D. Li, ‟Hesitant fuzzy graph and its application in multi-attribute decision makingâ€, Int. J Patran. Recogn. vol. 30, no. 11, pp. 1012-1018, 2017. [46] Rashid, Sheikh, N. Yaqoob, M. Akram and M. Gulistan, ‟Cubic graphs with applicationâ€, Int. J Anal. Applications, vo. 16, no. 5, pp. 733-750, 2018.
J. Ye, ‟Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environmentâ€, J Intell. Fuzzy. Syst., vol. 24, no. 1, pp. 23-36, 2015.