THERMAL AND MECHANICAL PROPERTIES OF AN IRON BASED AMORPHOUS ALLOY
Abstract
The Fe-Si-B is a well known system of technical importance used for various applications due to promising magnetic properties and corrosion resistant. Melt spun ribbons (MSRs) of 50 m thickness of Fe77.5Si13.3B9.2 alloy were produced by melt spinning technique. Master alloys were prepared by using 3-4 N pure metals. The alloy was characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), stereo scan and scanning electron microscopy (SEM) techniques. Elemental analysis was conducted by energy dispersive X-ray analyzer (EDAX). DSC results confirmed that the alloy showed wide supercooled liquid region before crystallization indicating good thermal stability. Activation energy was calculated to be 397 kJ/mol. Vicker’s and nanohardness as well as elastic modulus were measured. Nanohradness (H) to elastic modulus (E) ratio (H/E) indicates existence of covalent bonding in Fe-B-Si amorphous alloy. It is expected that the alloy is fit for fabrication of small electronics components, jewelry applications, structural materials and core windings of “Green transformersâ€.References
A. Inoue, Proc. Jpn. Acad. 81 B, Ser. B (2005)
pp. 156-171.
A. Inoue, Review: Bulk glassy and nonequilibrium
crystalline alloys by stabilization of supercooled
liquid: fabrication, functional properties and
applications (part 2), in Proc. Jpn. Acad. 81 B,
Ser. B (2005) 171-188.
H. Chiriac and N. Lupu, Mater. Sci. Eng. A 375-
(2004) 255.
M. Iqbal, J.I. Akhter, H.F. Zhang and Z.Q. Hu, J.
Non-Cryst. Solids 354 (2008) 3284.
M. Iqbal, J.I. Akhter, H.F. Zhang and Z.Q. Hu, J.
Non-Cryst. Solids 354 (2008) 5363.
C.Q. Zhang, H.F. Zhang, M.Q. Lv and Z.Q. Hu, J.
Non-Cryst. Solid 356 (2010) 1703.
C.Q. Zhang, Z.W. Zhu, H.F. Zhang and Z.Q. Hu,
J. Environ. Sci. 24 (2012)1021.
C.Q. Zhang, Z.W. Zhu, H.F. Zhang and Z.Q. Hu,
J. Non-Cryst. Solid 358 (2012) 61.
Y. Okazaki, J. Magn. Magn. Mater. 160 (1996)
A. Basak, A.J. Moses and M.R. Yasin, J. Magn.
Magn. Mater. 160 (1996) 210.
Y.B. Kim, D.H. Jang, H.K. Seok and K.Y. Kim,
Mater. Sci. Engg. A 449-451 (2007) 389.
K. Inagaki, M. Kuwabara, K. Sato, K. Fukui, S.
Nakajima and D. Azuma, Hitachi Review 60
(2011) 250.
N. Banerji, U.C. Johri, V. N. Kulkarni and R.M.
Singru, J. Mater. Sci. 30 (1995) 417.
J.I. Akhter, M. Iqbal, M. Siddique, M. Ahmad,
M.A. Haq, M.A. Shaikh and Z.Q. Hu, J. Mater.
Sci. Technol. 25 (2009) 48.
J.I. Akhter, M.A. Shaikh, M. Siddique, M.
Ahmad, M. Iqbal and Z.Q.Hu, J. Phys. D: Appl.
Phys. 35 (2002) 503.
C.Q. Zhang, Z.H. Zhang, Z. Qi, Y.X. Qi, J.Y.
Zhang and X.F. Bian, J. Non-Cryst. Solid 354
(2008) 3812.
Z.P. Lu, H. Bei and C. T. Liu, Intermetallics 15
(2007) 618.
Q.J. Chen, J. Shen, D.L. Zhang, H.B. Fan, J. F.
Sun and D.G. McCartney, Mater. Sci. Eng. A 433
(2006) 155.
Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang and
L. Yao, J. Alloy. Compd. 459 (2008) 251.
Z.L. Long, G. Xie, H. Wei, J. Peng, P. Zhang and
A. Inoue, Mater. Sci. Eng. A 509 (2009) 23.
A. Hruby, Czech. J. Phys. B 22 (1972) 1187.
M. Saad and M. Poulain, Mater. Sci. Forum 19
(1987) 11.
Y. Li, J. Mater. Sci. Technol. 15 (1999) 97.
M.L.F. Nascimento, L.A. Souza, E.B. Ferreira and
E.D. Zanotto, J. Non-Cryst. Solids 351 (2005)
G.C. Lavorato, G. Fiore, P. Tiberto, M. Baricco,
H. Sirkin and J.A. Moya, J. Alloy. Compd. 536S
(2012) S319.
H.E. Kissinger, Anal. Chem. 29 (1957)1702.
A. Bolshakov and G.M. Pharr, J. Mater. Res. 13
(1998) 1049.
J.G. Wang, B.W. Choi, T.G. Nieh and C.T. Liu, J.
Mater. Res. 15 (2000) 798.